SameBoy/JoyKit/JOYAxes2D.m

169 lines
4.3 KiB
Mathematica
Raw Normal View History

#import "JOYAxes2D.h"
#import "JOYElement.h"
@implementation JOYAxes2D
{
JOYElement *_element1, *_element2;
double _state1, _state2;
int32_t initialX, initialY;
int32_t minX, minY;
int32_t maxX, maxY;
}
+ (NSString *)usageToString: (JOYAxes2DUsage) usage
{
if (usage < JOYAxes2DUsageNonGenericMax) {
return (NSString *[]) {
@"None",
@"Left Stick",
@"Right Stick",
@"Middle Stick",
@"Pointer",
}[usage];
}
if (usage >= JOYAxes2DUsageGeneric0) {
return [NSString stringWithFormat:@"Generic 2D Analog Control %d", usage - JOYAxes2DUsageGeneric0];
}
return [NSString stringWithFormat:@"Unknown Usage 2D Axes %d", usage];
}
- (NSString *)usageString
{
return [self.class usageToString:_usage];
}
- (uint64_t)uniqueID
{
return _element1.uniqueID;
}
- (NSString *)description
{
return [NSString stringWithFormat:@"<%@: %p, %@ (%llu); State: %.2f%%, %.2f degrees>", self.className, self, self.usageString, self.uniqueID, self.distance * 100, self.angle];
}
- (instancetype)initWithFirstElement:(JOYElement *)element1 secondElement:(JOYElement *)element2
{
self = [super init];
if (!self) return self;
_element1 = element1;
_element2 = element2;
if (element1.usagePage == kHIDPage_GenericDesktop) {
uint16_t usage = element1.usage;
_usage = JOYAxes2DUsageGeneric0 + usage - kHIDUsage_GD_X + 1;
}
initialX = [_element1 value];
initialY = [_element2 value];
minX = element1.max;
minY = element2.max;
maxX = element1.min;
maxY = element2.min;
return self;
}
- (NSPoint)value
{
return NSMakePoint(_state1, _state2);
}
-(int32_t) effectiveMinX
{
int32_t rawMin = _element1.min;
int32_t rawMax = _element1.max;
if (initialX == 0) return rawMin;
if (minX <= (rawMin * 2 + initialX) / 3 && maxX >= (rawMax * 2 + initialX) / 3 ) return minX;
if ((initialX - rawMin) < (rawMax - initialX)) return rawMin;
return initialX - (rawMax - initialX);
}
-(int32_t) effectiveMinY
{
int32_t rawMin = _element2.min;
int32_t rawMax = _element2.max;
if (initialY == 0) return rawMin;
if (minX <= (rawMin * 2 + initialY) / 3 && maxY >= (rawMax * 2 + initialY) / 3 ) return minY;
if ((initialY - rawMin) < (rawMax - initialY)) return rawMin;
return initialY - (rawMax - initialY);
}
-(int32_t) effectiveMaxX
{
int32_t rawMin = _element1.min;
int32_t rawMax = _element1.max;
if (initialX == 0) return rawMax;
if (minX <= (rawMin * 2 + initialX) / 3 && maxX >= (rawMax * 2 + initialX) / 3 ) return maxX;
if ((initialX - rawMin) > (rawMax - initialX)) return rawMax;
return initialX + (initialX - rawMin);
}
-(int32_t) effectiveMaxY
{
int32_t rawMin = _element2.min;
int32_t rawMax = _element2.max;
if (initialY == 0) return rawMax;
if (minX <= (rawMin * 2 + initialY) / 3 && maxY >= (rawMax * 2 + initialY) / 3 ) return maxY;
if ((initialY - rawMin) > (rawMax - initialY)) return rawMax;
return initialY + (initialY - rawMin);
}
- (bool)updateState
{
int32_t x = [_element1 value];
int32_t y = [_element2 value];
if (x == 0 && y == 0) return false;
if (initialX == 0 && initialY == 0) {
initialX = x;
initialY = y;
}
double old1 = _state1, old2 = _state2;
{
double min = [self effectiveMinX];
double max = [self effectiveMaxX];
if (min == max) return false;
int32_t value = x;
if (initialX != 0) {
minX = MIN(value, minX);
maxX = MAX(value, maxX);
}
_state1 = (value - min) / (max - min) * 2 - 1;
}
{
double min = [self effectiveMinY];
double max = [self effectiveMaxY];
if (min == max) return false;
int32_t value = y;
if (initialY != 0) {
minY = MIN(value, minY);
maxY = MAX(value, maxY);
}
_state2 = (value - min) / (max - min) * 2 - 1;
}
return old1 != _state1 || old2 != _state2;
}
- (double)distance
{
return MIN(sqrt(_state1 * _state1 + _state2 * _state2), 1.0);
}
- (double)angle {
double temp = atan2(_state2, _state1) * 180 / M_PI;
if (temp >= 0) return temp;
return temp + 360;
}
@end