diff --git a/Core/display.c b/Core/display.c index 4def6c8..fd502ec 100755 --- a/Core/display.c +++ b/Core/display.c @@ -250,9 +250,6 @@ void GB_palette_changed(GB_gameboy_t *gb, bool background_palette, uint8_t index static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) { - uint8_t previous_stat_interrupt_line = gb->stat_interrupt_line; - gb->stat_interrupt_line = false; - if (!(gb->io_registers[GB_IO_LCDC] & 0x80)) { /* LCD is disabled, state is constant */ @@ -261,6 +258,7 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) gb->io_registers[GB_IO_LY] = 0; gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 4; + gb->effective_scx = gb->io_registers[GB_IO_SCX]; if (gb->hdma_on_hblank) { gb->hdma_on_hblank = false; gb->hdma_on = false; @@ -292,24 +290,38 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) /* According to AntonioND's docs this value should be 0 in CGB mode, but tests I ran on my CGB seem to contradict these findings. Todo: Investigate what causes the difference between our findings */ - uint8_t stat_delay = gb->cgb_double_speed? 2 : 4; //(gb->cgb_mode? 0 : 4); - /* Todo: This is correct for DMG. Is it correct for the 3 CGB modes (DMG/single/double)?*/ - uint8_t scx_delay = ((gb->effective_scx & 7) + atomic_increase - 1) & ~(atomic_increase - 1); + uint8_t stat_delay = gb->cgb_double_speed? 2 : 4; // (gb->cgb_mode? 0 : 4); + /* Todo: Is this correct for DMG mode CGB? */ + uint8_t scx_delay = gb->effective_scx; + if (gb->cgb_double_speed) { + scx_delay = (scx_delay + 1) & ~1 & 7; + } + else { + scx_delay = (scx_delay + (gb->first_scanline ? 2 : 0)) & ~3 & 7; + } + /* Todo: These are correct for DMG, DMG-mode CGB, and single speed CGB. Is is correct for double speed CGB? */ uint8_t oam_blocking_rush = gb->cgb_double_speed? 2 : 4; uint8_t vram_blocking_rush = gb->is_cgb? 0 : 4; for (; cycles; cycles -= atomic_increase) { - gb->delayed_interrupts &= ~3; + bool dmg_future_stat = false; + gb->io_registers[GB_IO_IF] |= gb->future_interrupts & 3; + gb->future_interrupts &= ~3; + + bool previous_stat_interrupt_line = gb->stat_interrupt_line; + gb->stat_interrupt_line = false; + gb->display_cycles += atomic_increase; /* The very first line is 4 clocks shorter when the LCD turns on. Verified on SGB2, CGB in CGB mode and CGB in double speed mode. */ - if (gb->first_scanline && gb->display_cycles >= LINE_LENGTH - 4) { + if (gb->first_scanline && gb->display_cycles >= LINE_LENGTH - 8) { gb->first_scanline = false; gb->display_cycles += 4; } bool should_compare_ly = true; uint8_t ly_for_comparison = gb->io_registers[GB_IO_LY] = gb->display_cycles / LINE_LENGTH; + bool just_entered_hblank = false; /* Handle cycle completion. STAT's initial value depends on model and mode */ @@ -343,10 +355,11 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) else if (gb->display_cycles == LINES * LINE_LENGTH + stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 1; - gb->io_registers[GB_IO_IF] |= 1; if (gb->is_cgb) { - /* See comment on STAT interrupt at the end of the loop */ - gb->delayed_interrupts |= 1; + gb->future_interrupts |= 1; + } + else { + gb->io_registers[GB_IO_IF] |= 1; } /* Entering VBlank state triggers the OAM interrupt. In CGB, it happens 4 cycles earlier */ @@ -382,17 +395,19 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) else if (gb->display_cycles == MODE2_LENGTH) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 3; + gb->effective_scx = gb->io_registers[GB_IO_SCX]; gb->oam_read_blocked = true; gb->vram_read_blocked = true; gb->oam_write_blocked = true; gb->vram_write_blocked = true; } - else if (gb->display_cycles == MODE2_LENGTH + MODE3_LENGTH) { + else if (gb->display_cycles == MODE2_LENGTH + MODE3_LENGTH + scx_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; + just_entered_hblank = true; } } @@ -440,6 +455,7 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) gb->previous_lcdc_x = - (gb->effective_scx & 0x7); } else if (position_in_line == MODE2_LENGTH + MODE3_LENGTH + stat_delay + scx_delay) { + just_entered_hblank = true; gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; @@ -541,33 +557,41 @@ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) if (!gb->stat_interrupt_line) { switch (gb->io_registers[GB_IO_STAT] & 3) { - case 0: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 8; break; + case 0: + gb->stat_interrupt_line = (gb->io_registers[GB_IO_STAT] & 8); + if (!gb->cgb_double_speed && just_entered_hblank && ((gb->effective_scx + (gb->first_scanline ? 2 : 0)) & 3) == 3) { + gb->stat_interrupt_line = false; + } + else if (just_entered_hblank && ((gb->effective_scx + (gb->first_scanline ? 2 : 0)) & 3) != 0) { + dmg_future_stat = true; + } + break; case 1: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x10; break; case 2: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x20; break; } - /* Use requested a LY=LYC interrupt and the LY=LYC bit is on */ + /* User requested a LY=LYC interrupt and the LY=LYC bit is on */ if ((gb->io_registers[GB_IO_STAT] & 0x44) == 0x44) { gb->stat_interrupt_line = true; + dmg_future_stat = false; } } - } - - /* On the CGB, the last cycle of line 144 triggers an OAM interrupt - Todo: Verify timing for CGB in CGB mode and double speed CGB */ - if (gb->is_cgb && - gb->display_cycles == LINES * LINE_LENGTH + stat_delay - atomic_increase && - (gb->io_registers[GB_IO_STAT] & 0x20)) { - gb->stat_interrupt_line = true; - } - - if (gb->stat_interrupt_line && !previous_stat_interrupt_line) { - gb->io_registers[GB_IO_IF] |= 2; - if (gb->is_cgb) { - /* On CGB, the STAT interrupt is not aligned to a T-Cycle, therefore it is only effective the next T-Cycle - Todo: verify on DMG mode CGB. This was only tested on LYC STAT interrupts, should be tested on others - as well. */ - gb->delayed_interrupts |= 2; + + /* On the CGB, the last cycle of line 144 triggers an OAM interrupt + Todo: Verify timing for CGB in CGB mode and double speed CGB */ + if (gb->is_cgb && + gb->display_cycles == LINES * LINE_LENGTH + stat_delay - atomic_increase && + (gb->io_registers[GB_IO_STAT] & 0x20)) { + gb->stat_interrupt_line = true; + } + + if (gb->stat_interrupt_line && !previous_stat_interrupt_line) { + if (gb->is_cgb || dmg_future_stat) { + gb->future_interrupts |= 2; + } + else { + gb->io_registers[GB_IO_IF] |= 2; + } } } diff --git a/Core/gb.h b/Core/gb.h index 58a885a..8ff820b 100644 --- a/Core/gb.h +++ b/Core/gb.h @@ -331,10 +331,8 @@ struct GB_gameboy_internal_s { GB_PADDING(uint16_t, serial_cycles); uint16_t serial_cycles; /* This field changed its meaning in v0.10 */ uint16_t serial_length; - uint8_t delayed_interrupts; /* When an interrupt occurs while not aligned to a T-cycle, it must be "delayed" */ - bool dont_delay_timer_interrupt; /* If the timer glitch causes a TIMA overflow, it causes the timer to overflow - with different timing, so the triggered interrupt is not delayed. - Todo: needs test ROM. */ + uint8_t future_interrupts; /* Interrupts can occur in any T-cycle. Some timings result in different interrupt + timing when the CPU is in halt mode, and might also affect the DI instruction. */ ); /* APU */ diff --git a/Core/memory.c b/Core/memory.c index 154ca1d..b41057f 100644 --- a/Core/memory.c +++ b/Core/memory.c @@ -136,7 +136,7 @@ static uint8_t read_high_memory(GB_gameboy_t *gb, uint16_t addr) if (addr < 0xFF80) { switch (addr & 0xFF) { case GB_IO_IF: - return gb->io_registers[GB_IO_IF] | 0xE0; + return gb->io_registers[GB_IO_IF] | 0xE0 | gb->future_interrupts; case GB_IO_TAC: return gb->io_registers[GB_IO_TAC] | 0xF8; case GB_IO_STAT: @@ -414,8 +414,9 @@ static void write_high_memory(GB_gameboy_t *gb, uint16_t addr, uint8_t value) case GB_IO_WX: GB_window_related_write(gb, addr & 0xFF, value); break; - case GB_IO_SCX: case GB_IO_IF: + gb->future_interrupts = 0; + case GB_IO_SCX: case GB_IO_SCY: case GB_IO_LYC: case GB_IO_BGP: diff --git a/Core/timing.c b/Core/timing.c index 8192648..2f5b761 100644 --- a/Core/timing.c +++ b/Core/timing.c @@ -82,15 +82,13 @@ static void GB_ir_run(GB_gameboy_t *gb) static void advance_tima_state_machine(GB_gameboy_t *gb) { - gb->delayed_interrupts &= ~4; + gb->io_registers[GB_IO_IF] |= gb->future_interrupts & 4; + gb->future_interrupts &= ~4; if (gb->tima_reload_state == GB_TIMA_RELOADED) { gb->tima_reload_state = GB_TIMA_RUNNING; } else if (gb->tima_reload_state == GB_TIMA_RELOADING) { - gb->io_registers[GB_IO_IF] |= 4; - if (!gb->dont_delay_timer_interrupt) { - gb->delayed_interrupts |= 4; // Timer interrupt is not aligned to a T-cycle and therefore is effective only the next one. - } + gb->future_interrupts |= 4; gb->tima_reload_state = GB_TIMA_RELOADED; } } @@ -157,7 +155,6 @@ static void increase_tima(GB_gameboy_t *gb) { gb->io_registers[GB_IO_TIMA]++; if (gb->io_registers[GB_IO_TIMA] == 0) { - gb->dont_delay_timer_interrupt = false; gb->io_registers[GB_IO_TIMA] = gb->io_registers[GB_IO_TMA]; gb->tima_reload_state = GB_TIMA_RELOADING; } @@ -201,7 +198,6 @@ void GB_emulate_timer_glitch(GB_gameboy_t *gb, uint8_t old_tac, uint8_t new_tac) /* And now either the timer must be disabled, or the new bit used for overflow testing be 0. */ if (!(new_tac & 4) || gb->div_cycles & (new_clocks >> 1)) { increase_tima(gb); - gb->dont_delay_timer_interrupt = true; } } } diff --git a/Core/z80_cpu.c b/Core/z80_cpu.c index b6dde8a..e7b1b5c 100644 --- a/Core/z80_cpu.c +++ b/Core/z80_cpu.c @@ -1337,8 +1337,14 @@ static GB_opcode_t *opcodes[256] = { void GB_cpu_run(GB_gameboy_t *gb) { gb->vblank_just_occured = false; - uint8_t interrupt_queue = gb->interrupt_enable & gb->io_registers[GB_IO_IF] & 0x1F & ~gb->delayed_interrupts; + uint8_t interrupt_queue = gb->interrupt_enable & gb->io_registers[GB_IO_IF] & 0x1F; + if (!gb->halted) { + interrupt_queue |= gb->future_interrupts & gb->interrupt_enable; + } + gb->io_registers[GB_IO_IF] |= gb->future_interrupts; + gb->future_interrupts = 0; + if (interrupt_queue) { gb->halted = false; }