#include <stdbool.h> #include <stdlib.h> #include <assert.h> #include <string.h> #include "gb.h" /* Each line is 456 cycles, approximately: Mode 2 - 80 cycles / OAM Transfer Mode 3 - 172 cycles / Rendering Mode 0 - 204 cycles / HBlank Mode 1 is VBlank Todo: Mode lengths are not constants, see http://blog.kevtris.org/blogfiles/Nitty%20Gritty%20Gameboy%20VRAM%20Timing.txt */ #define MODE2_LENGTH (80) #define MODE3_LENGTH (172) #define MODE0_LENGTH (204) #define LINE_LENGTH (MODE2_LENGTH + MODE3_LENGTH + MODE0_LENGTH) // = 456 #define LINES (144) #define WIDTH (160) #define VIRTUAL_LINES (LCDC_PERIOD / LINE_LENGTH) // = 154 typedef struct __attribute__((packed)) { uint8_t y; uint8_t x; uint8_t tile; uint8_t flags; } GB_sprite_t; static bool window_enabled(GB_gameboy_t *gb) { if ((gb->io_registers[GB_IO_LCDC] & 0x1) == 0) { if (!gb->cgb_mode && gb->is_cgb) { return false; } } return (gb->io_registers[GB_IO_LCDC] & 0x20) && gb->io_registers[GB_IO_WX] < 167; } static uint32_t get_pixel(GB_gameboy_t *gb, uint8_t x, uint8_t y) { /* Bit 7 - LCD Display Enable (0=Off, 1=On) Bit 6 - Window Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF) Bit 5 - Window Display Enable (0=Off, 1=On) Bit 4 - BG & Window Tile Data Select (0=8800-97FF, 1=8000-8FFF) Bit 3 - BG Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF) Bit 2 - OBJ (Sprite) Size (0=8x8, 1=8x16) Bit 1 - OBJ (Sprite) Display Enable (0=Off, 1=On) Bit 0 - BG Display (for CGB see below) (0=Off, 1=On) */ uint16_t map = 0x1800; uint8_t tile = 0; uint8_t attributes = 0; uint8_t sprite_palette = 0; uint16_t tile_address = 0; uint8_t background_pixel = 0, sprite_pixel = 0; GB_sprite_t *sprite = (GB_sprite_t *) &gb->oam; uint8_t sprites_in_line = 0; bool lcd_8_16_mode = (gb->io_registers[GB_IO_LCDC] & 4) != 0; bool sprites_enabled = (gb->io_registers[GB_IO_LCDC] & 2) != 0; uint8_t lowest_sprite_x = 0xFF; bool use_obp1 = false, priority = false; bool in_window = false; bool bg_enabled = true; bool bg_behind = false; if ((gb->io_registers[GB_IO_LCDC] & 0x1) == 0) { if (gb->cgb_mode) { bg_behind = true; } else { bg_enabled = false; } } if (window_enabled(gb) && y >= gb->io_registers[GB_IO_WY] + gb->wy_diff && x + 7 >= gb->io_registers[GB_IO_WX]) { in_window = true; } if (sprites_enabled) { // Loop all sprites for (uint8_t i = 40; i--; sprite++) { int sprite_y = sprite->y - 16; int sprite_x = sprite->x - 8; // Is sprite in our line? if (sprite_y <= y && sprite_y + (lcd_8_16_mode? 16:8) > y) { uint8_t tile_x, tile_y, current_sprite_pixel; uint16_t line_address; // Limit to 10 sprites in one scan line. if (++sprites_in_line == 11) break; // Does not overlap our pixel. if (sprite_x > x || sprite_x + 8 <= x) continue; tile_x = x - sprite_x; tile_y = y - sprite_y; if (sprite->flags & 0x20) tile_x = 7 - tile_x; if (sprite->flags & 0x40) tile_y = (lcd_8_16_mode? 15:7) - tile_y; line_address = (lcd_8_16_mode? sprite->tile & 0xFE : sprite->tile) * 0x10 + tile_y * 2; if (gb->cgb_mode && (sprite->flags & 0x8)) { line_address += 0x2000; } current_sprite_pixel = (((gb->vram[line_address ] >> ((~tile_x)&7)) & 1 ) | ((gb->vram[line_address + 1] >> ((~tile_x)&7)) & 1) << 1 ); /* From Pandocs: When sprites with different x coordinate values overlap, the one with the smaller x coordinate (closer to the left) will have priority and appear above any others. This applies in Non CGB Mode only. When sprites with the same x coordinate values overlap, they have priority according to table ordering. (i.e. $FE00 - highest, $FE04 - next highest, etc.) In CGB Mode priorities are always assigned like this. */ if (current_sprite_pixel != 0) { if (!gb->cgb_mode && sprite->x >= lowest_sprite_x) { break; } sprite_pixel = current_sprite_pixel; lowest_sprite_x = sprite->x; use_obp1 = (sprite->flags & 0x10) != 0; sprite_palette = sprite->flags & 7; priority = (sprite->flags & 0x80) != 0; if (gb->cgb_mode) { break; } } } } } if (in_window) { x -= gb->io_registers[GB_IO_WX] - 7; // Todo: This value is probably latched y -= gb->io_registers[GB_IO_WY] + gb->wy_diff; } else { x += gb->effective_scx; y += gb->effective_scy; } if (gb->io_registers[GB_IO_LCDC] & 0x08 && !in_window) { map = 0x1C00; } else if (gb->io_registers[GB_IO_LCDC] & 0x40 && in_window) { map = 0x1C00; } tile = gb->vram[map + x/8 + y/8 * 32]; if (gb->cgb_mode) { attributes = gb->vram[map + x/8 + y/8 * 32 + 0x2000]; } if (attributes & 0x80) { priority = !bg_behind && bg_enabled; } if (!priority && sprite_pixel) { if (!gb->cgb_mode) { sprite_pixel = (gb->io_registers[use_obp1? GB_IO_OBP1:GB_IO_OBP0] >> (sprite_pixel << 1)) & 3; sprite_palette = use_obp1; } return gb->sprite_palettes_rgb[sprite_palette * 4 + sprite_pixel]; } if (bg_enabled) { if (gb->io_registers[GB_IO_LCDC] & 0x10) { tile_address = tile * 0x10; } else { tile_address = (int8_t) tile * 0x10 + 0x1000; } if (attributes & 0x8) { tile_address += 0x2000; } if (attributes & 0x20) { x = ~x; } if (attributes & 0x40) { y = ~y; } background_pixel = (((gb->vram[tile_address + (y & 7) * 2 ] >> ((~x)&7)) & 1 ) | ((gb->vram[tile_address + (y & 7) * 2 + 1] >> ((~x)&7)) & 1) << 1 ); } if (priority && sprite_pixel && !background_pixel) { if (!gb->cgb_mode) { sprite_pixel = (gb->io_registers[use_obp1? GB_IO_OBP1:GB_IO_OBP0] >> (sprite_pixel << 1)) & 3; sprite_palette = use_obp1; } return gb->sprite_palettes_rgb[sprite_palette * 4 + sprite_pixel]; } if (!gb->cgb_mode) { background_pixel = ((gb->io_registers[GB_IO_BGP] >> (background_pixel << 1)) & 3); } return gb->background_palettes_rgb[(attributes & 7) * 4 + background_pixel]; } static void display_vblank(GB_gameboy_t *gb) { if (gb->turbo) { if (GB_timing_sync_turbo(gb)) { return; } } if (!gb->disable_rendering && ((!(gb->io_registers[GB_IO_LCDC] & 0x80) || gb->stopped) || gb->frame_skip_state == GB_FRAMESKIP_LCD_TURNED_ON)) { /* LCD is off, set screen to white or black (if LCD is on in stop mode) */ uint32_t color = (gb->io_registers[GB_IO_LCDC] & 0x80) && gb->stopped ? gb->rgb_encode_callback(gb, 0, 0, 0) : gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); for (unsigned i = 0; i < WIDTH * LINES; i++) { gb ->screen[i] = color; } } gb->vblank_callback(gb); GB_timing_sync(gb); gb->vblank_just_occured = true; } static inline uint8_t scale_channel(uint8_t x) { return (x << 3) | (x >> 2); } static inline uint8_t scale_channel_with_curve(uint8_t x) { return (uint8_t[]){0,2,4,7,12,18,25,34,42,52,62,73,85,97,109,121,134,146,158,170,182,193,203,213,221,230,237,243,248,251,253,255,}[x]; } uint32_t GB_convert_rgb15(GB_gameboy_t *gb, uint16_t color) { uint8_t r = (color) & 0x1F; uint8_t g = (color >> 5) & 0x1F; uint8_t b = (color >> 10) & 0x1F; if (gb->color_correction_mode == GB_COLOR_CORRECTION_DISABLED) { r = scale_channel(r); g = scale_channel(g); b = scale_channel(b); } else { r = scale_channel_with_curve(r); g = scale_channel_with_curve(g); b = scale_channel_with_curve(b); if (gb->color_correction_mode != GB_COLOR_CORRECTION_CORRECT_CURVES) { uint8_t new_g = (g * 3 + b) / 4; uint8_t new_r = r, new_b = b; if (gb->color_correction_mode == GB_COLOR_CORRECTION_PRESERVE_BRIGHTNESS) { uint8_t old_max = MAX(r, MAX(g, b)); uint8_t new_max = MAX(new_r, MAX(new_g, new_b)); if (new_max != 0) { new_r = new_r * old_max / new_max; new_g = new_g * old_max / new_max; new_b = new_b * old_max / new_max; } uint8_t old_min = MIN(r, MIN(g, b)); uint8_t new_min = MIN(new_r, MIN(new_g, new_b)); if (new_min != 0xff) { new_r = 0xff - (0xff - new_r) * (0xff - old_min) / (0xff - new_min); new_g = 0xff - (0xff - new_g) * (0xff - old_min) / (0xff - new_min); new_b = 0xff - (0xff - new_b) * (0xff - old_min) / (0xff - new_min);; } } r = new_r; g = new_g; b = new_b; } } return gb->rgb_encode_callback(gb, r, g, b); } void GB_palette_changed(GB_gameboy_t *gb, bool background_palette, uint8_t index) { if (!gb->rgb_encode_callback || !gb->is_cgb) return; uint8_t *palette_data = background_palette? gb->background_palettes_data : gb->sprite_palettes_data; uint16_t color = palette_data[index & ~1] | (palette_data[index | 1] << 8); (background_palette? gb->background_palettes_rgb : gb->sprite_palettes_rgb)[index / 2] = GB_convert_rgb15(gb, color); } void GB_set_color_correction_mode(GB_gameboy_t *gb, GB_color_correction_mode_t mode) { gb->color_correction_mode = mode; if (gb->is_cgb) { for (unsigned i = 0; i < 32; i++) { GB_palette_changed(gb, false, i * 2); GB_palette_changed(gb, true, i * 2); } } } /* STAT interrupt is implemented based on this finding: http://board.byuu.org/phpbb3/viewtopic.php?p=25527#p25531 General timing is based on GiiBiiAdvance's documents: https://github.com/AntonioND/giibiiadvance */ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) { if (!(gb->io_registers[GB_IO_LCDC] & 0x80)) { /* LCD is disabled, state is constant */ /* When the LCD is off, LY is 0 and STAT mode is 0. Todo: Verify the LY=LYC flag should be on. */ gb->io_registers[GB_IO_LY] = 0; gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 4; gb->effective_scx = gb->io_registers[GB_IO_SCX]; if (gb->hdma_on_hblank) { gb->hdma_on_hblank = false; gb->hdma_on = false; /* Todo: is this correct? */ gb->hdma_steps_left = 0xff; } gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; /* Keep sending vblanks to user even if the screen is off */ gb->display_cycles += cycles; if (gb->display_cycles >= LCDC_PERIOD) { /* VBlank! */ gb->display_cycles -= LCDC_PERIOD; display_vblank(gb); } /* Reset window rendering state */ gb->wy_diff = 0; gb->window_disabled_while_active = false; return; } uint8_t atomic_increase = gb->cgb_double_speed? 2 : 4; /* According to AntonioND's docs this value should be 0 in CGB mode, but tests I ran on my CGB seem to contradict these findings. Todo: Investigate what causes the difference between our findings */ uint8_t stat_delay = gb->cgb_double_speed? 2 : 4; // (gb->cgb_mode? 0 : 4); /* Todo: Is this correct for DMG mode CGB? */ uint8_t scx_delay = gb->effective_scx & 7; if (gb->cgb_double_speed) { scx_delay = (scx_delay + 1) & ~1; } else { scx_delay = (scx_delay + (gb->first_scanline ? 2 : 0)) & ~3; } /* Todo: These are correct for DMG, DMG-mode CGB, and single speed CGB. Is is correct for double speed CGB? */ uint8_t oam_blocking_rush = gb->cgb_double_speed? 2 : 4; uint8_t vram_blocking_rush = gb->is_cgb? 0 : 4; for (; cycles; cycles -= atomic_increase) { bool dmg_future_stat = false; gb->io_registers[GB_IO_IF] |= gb->future_interrupts & 3; gb->future_interrupts &= ~3; bool previous_stat_interrupt_line = gb->stat_interrupt_line; gb->stat_interrupt_line = false; gb->display_cycles += atomic_increase; /* The very first line is 4 clocks shorter when the LCD turns on. Verified on SGB2, CGB in CGB mode and CGB in double speed mode. */ if (gb->first_scanline && gb->display_cycles >= LINE_LENGTH - 8) { gb->first_scanline = false; gb->display_cycles += 4; } bool should_compare_ly = true; uint8_t ly_for_comparison = gb->io_registers[GB_IO_LY] = gb->display_cycles / LINE_LENGTH; bool just_entered_hblank = false; /* Handle cycle completion. STAT's initial value depends on model and mode */ if (gb->display_cycles == LCDC_PERIOD) { /* VBlank! */ gb->display_cycles = 0; gb->io_registers[GB_IO_STAT] &= ~3; if (gb->is_cgb) { if (stat_delay) { gb->io_registers[GB_IO_STAT] |= 1; } else { gb->io_registers[GB_IO_STAT] |= 2; } } ly_for_comparison = gb->io_registers[GB_IO_LY] = 0; /* Todo: verify timing */ gb->oam_read_blocked = true; gb->vram_read_blocked = false; gb->oam_write_blocked = true; gb->vram_write_blocked = false; /* Reset window rendering state */ gb->wy_diff = 0; gb->window_disabled_while_active = false; } /* Entered VBlank state, update STAT and IF */ else if (gb->display_cycles == LINES * LINE_LENGTH + stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 1; if (gb->is_cgb) { gb->future_interrupts |= 1; } else { gb->io_registers[GB_IO_IF] |= 1; } /* Entering VBlank state triggers the OAM interrupt. In CGB, it happens 4 cycles earlier */ if (gb->io_registers[GB_IO_STAT] & 0x20 && !gb->is_cgb) { gb->stat_interrupt_line = true; } if (gb->frame_skip_state == GB_FRAMESKIP_LCD_TURNED_ON) { if (!gb->is_cgb) { display_vblank(gb); gb->frame_skip_state = GB_FRAMESKIP_SECOND_FRAME_RENDERED; } else { gb->frame_skip_state = GB_FRAMESKIP_FIRST_FRAME_SKIPPED; } } else { gb->frame_skip_state = GB_FRAMESKIP_SECOND_FRAME_RENDERED; display_vblank(gb); } } /* Handle line 0 right after turning the LCD on */ else if (gb->first_scanline) { /* OAM and VRAM blocking is not rushed in the very first scanline */ if (gb->display_cycles == atomic_increase) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; } else if (gb->display_cycles == MODE2_LENGTH) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 3; gb->effective_scx = gb->io_registers[GB_IO_SCX]; gb->oam_read_blocked = true; gb->vram_read_blocked = true; gb->oam_write_blocked = true; gb->vram_write_blocked = true; } else if (gb->display_cycles == MODE2_LENGTH + MODE3_LENGTH + scx_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; just_entered_hblank = true; } } /* Handle STAT changes for lines 0-143 */ else if (gb->display_cycles < LINES * LINE_LENGTH) { unsigned position_in_line = gb->display_cycles % LINE_LENGTH; /* Handle OAM and VRAM blocking */ /* Todo: verify CGB timing for write blocking */ if (position_in_line == stat_delay - oam_blocking_rush || // In case stat_delay is 0 (position_in_line == LINE_LENGTH + stat_delay - oam_blocking_rush && gb->io_registers[GB_IO_LY] != 143)) { gb->oam_read_blocked = true; gb->oam_write_blocked = gb->is_cgb; } else if (position_in_line == MODE2_LENGTH + stat_delay - vram_blocking_rush) { gb->vram_read_blocked = true; gb->vram_write_blocked = gb->is_cgb; } if (position_in_line == stat_delay) { gb->oam_write_blocked = true; } else if (!gb->is_cgb && position_in_line == MODE2_LENGTH + stat_delay - oam_blocking_rush) { gb->oam_write_blocked = false; } else if (position_in_line == MODE2_LENGTH + stat_delay) { gb->vram_write_blocked = true; gb->oam_write_blocked = true; } /* Handle everything else */ /* OAM interrupt happens slightly before STAT is actually updated. (About 1-3 T-cycles) Todo: Test double speed CGB */ if (position_in_line == 0 && stat_delay) { if (gb->io_registers[GB_IO_STAT] & 0x20) { gb->stat_interrupt_line = true; dmg_future_stat = true; } } if (position_in_line == stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 2; } else if (position_in_line == 0 && gb->display_cycles != 0) { should_compare_ly = gb->is_cgb; ly_for_comparison--; } else if (position_in_line == MODE2_LENGTH + stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 3; gb->effective_scx = gb->io_registers[GB_IO_SCX]; gb->previous_lcdc_x = - (gb->effective_scx & 0x7); } else if (position_in_line == MODE2_LENGTH + MODE3_LENGTH + stat_delay + scx_delay) { just_entered_hblank = true; gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; if (gb->hdma_on_hblank) { gb->hdma_on = true; gb->hdma_cycles = 0; } } } /* Line 153 is special */ else if (gb->display_cycles >= (VIRTUAL_LINES - 1) * LINE_LENGTH) { /* DMG */ if (!gb->is_cgb) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: should_compare_ly = false; break; case 4: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = VIRTUAL_LINES - 1; break; case 8: gb->io_registers[GB_IO_LY] = 0; should_compare_ly = false; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* CGB in DMG mode */ else if (!gb->cgb_mode) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: ly_for_comparison = VIRTUAL_LINES - 2; break; case 4: break; case 8: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* Single speed CGB */ else if (!gb->cgb_double_speed) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: break; case 4: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* Double speed CGB */ else { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: ly_for_comparison = VIRTUAL_LINES - 2; break; case 2: case 4: break; case 6: case 8: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } } /* Lines 144 - 152 */ else { if (stat_delay && gb->display_cycles % LINE_LENGTH == 0) { should_compare_ly = gb->is_cgb; ly_for_comparison--; } } /* Set LY=LYC bit */ if (should_compare_ly && (ly_for_comparison == gb->io_registers[GB_IO_LYC])) { gb->io_registers[GB_IO_STAT] |= 4; } else { gb->io_registers[GB_IO_STAT] &= ~4; } if (!gb->stat_interrupt_line) { switch (gb->io_registers[GB_IO_STAT] & 3) { case 0: gb->stat_interrupt_line = (gb->io_registers[GB_IO_STAT] & 8); if (!gb->cgb_double_speed && just_entered_hblank && ((gb->effective_scx + (gb->first_scanline ? 2 : 0)) & 3) == 3) { gb->stat_interrupt_line = false; } else if (just_entered_hblank && ((gb->effective_scx + (gb->first_scanline ? 2 : 0)) & 3) != 0) { dmg_future_stat = true; } break; case 1: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x10; break; case 2: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x20; break; } /* User requested a LY=LYC interrupt and the LY=LYC bit is on */ if ((gb->io_registers[GB_IO_STAT] & 0x44) == 0x44) { gb->stat_interrupt_line = true; dmg_future_stat = false; } } /* On the CGB, the last cycle of line 144 triggers an OAM interrupt Todo: Verify timing for CGB in CGB mode and double speed CGB */ if (gb->is_cgb && gb->display_cycles == LINES * LINE_LENGTH + stat_delay - atomic_increase && (gb->io_registers[GB_IO_STAT] & 0x20)) { gb->stat_interrupt_line = true; } if (gb->stat_interrupt_line && !previous_stat_interrupt_line) { if (gb->is_cgb || dmg_future_stat) { gb->future_interrupts |= 2; } else { gb->io_registers[GB_IO_IF] |= 2; } } }; #if 0 /* The value of LY is glitched in the last cycle of every line in CGB mode CGB in single speed This is based on AntonioND's docs, however I could not reproduce these findings on my CGB. Todo: Find out why my tests contradict these docs */ if (gb->cgb_mode && !gb->cgb_double_speed && gb->display_cycles % LINE_LENGTH == LINE_LENGTH - 4) { uint8_t glitch_pattern[] = {0, 0, 2, 0, 4, 4, 6, 0, 8}; if ((gb->io_registers[GB_IO_LY] & 0xF) == 0xF) { gb->io_registers[GB_IO_LY] = glitch_pattern[gb->io_registers[GB_IO_LY] >> 4] << 4; } else { gb->io_registers[GB_IO_LY] = glitch_pattern[gb->io_registers[GB_IO_LY] & 7] | (gb->io_registers[GB_IO_LY] & 0xF8); } } #endif } void GB_display_run(GB_gameboy_t *gb, uint8_t cycles) { update_display_state(gb, cycles); if (gb->disable_rendering) { return; } /* Display controller bug: For some reason, the OAM STAT interrupt is called, as expected, for LY = 0..143. However, it is also called from LY = 144. See http://forums.nesdev.com/viewtopic.php?f=20&t=13727 */ if (!(gb->io_registers[GB_IO_LCDC] & 0x80)) { /* LCD is disabled, do nothing */ return; } if (gb->display_cycles >= LINE_LENGTH * 144) { /* VBlank */ return; } uint8_t effective_ly = gb->display_cycles / LINE_LENGTH; if (gb->display_cycles % LINE_LENGTH < MODE2_LENGTH) { /* Mode 2 */ return; } /* Render */ int16_t current_lcdc_x = gb->display_cycles % LINE_LENGTH - MODE2_LENGTH - (gb->effective_scx & 0x7) - 7; for (;gb->previous_lcdc_x < current_lcdc_x; gb->previous_lcdc_x++) { if (gb->previous_lcdc_x >= WIDTH) { continue; } if (((gb->previous_lcdc_x + gb->effective_scx) & 7) == 0) { gb->effective_scy = gb->io_registers[GB_IO_SCY]; } if (gb->previous_lcdc_x < 0) { continue; } gb->screen[effective_ly * WIDTH + gb->previous_lcdc_x] = get_pixel(gb, gb->previous_lcdc_x, effective_ly); } } void GB_draw_tileset(GB_gameboy_t *gb, uint32_t *dest, GB_palette_type_t palette_type, uint8_t palette_index) { uint32_t none_palette[4]; uint32_t *palette = NULL; switch (gb->is_cgb? palette_type : GB_PALETTE_NONE) { default: case GB_PALETTE_NONE: none_palette[0] = gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); none_palette[1] = gb->rgb_encode_callback(gb, 0xAA, 0xAA, 0xAA); none_palette[2] = gb->rgb_encode_callback(gb, 0x55, 0x55, 0x55); none_palette[3] = gb->rgb_encode_callback(gb, 0, 0, 0 ); palette = none_palette; break; case GB_PALETTE_BACKGROUND: palette = gb->background_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_OAM: palette = gb->sprite_palettes_rgb + (4 * (palette_index & 7)); break; } for (unsigned y = 0; y < 192; y++) { for (unsigned x = 0; x < 256; x++) { if (x >= 128 && !gb->is_cgb) { *(dest++) = gb->background_palettes_rgb[0]; continue; } uint16_t tile = (x % 128) / 8 + y / 8 * 16; uint16_t tile_address = tile * 0x10 + (x >= 128? 0x2000 : 0); uint8_t pixel = (((gb->vram[tile_address + (y & 7) * 2 ] >> ((~x)&7)) & 1 ) | ((gb->vram[tile_address + (y & 7) * 2 + 1] >> ((~x)&7)) & 1) << 1); if (!gb->cgb_mode) { if (palette_type == GB_PALETTE_BACKGROUND) { pixel = ((gb->io_registers[GB_IO_BGP] >> (pixel << 1)) & 3); } else if (!gb->cgb_mode) { if (palette_type == GB_PALETTE_OAM) { pixel = ((gb->io_registers[palette_index == 0? GB_IO_OBP0 : GB_IO_OBP1] >> (pixel << 1)) & 3); } } } *(dest++) = palette[pixel]; } } } void GB_draw_tilemap(GB_gameboy_t *gb, uint32_t *dest, GB_palette_type_t palette_type, uint8_t palette_index, GB_map_type_t map_type, GB_tileset_type_t tileset_type) { uint32_t none_palette[4]; uint32_t *palette = NULL; uint16_t map = 0x1800; switch (gb->is_cgb? palette_type : GB_PALETTE_NONE) { case GB_PALETTE_NONE: none_palette[0] = gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); none_palette[1] = gb->rgb_encode_callback(gb, 0xAA, 0xAA, 0xAA); none_palette[2] = gb->rgb_encode_callback(gb, 0x55, 0x55, 0x55); none_palette[3] = gb->rgb_encode_callback(gb, 0, 0, 0 ); palette = none_palette; break; case GB_PALETTE_BACKGROUND: palette = gb->background_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_OAM: palette = gb->sprite_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_AUTO: break; } if (map_type == GB_MAP_9C00 || (map_type == GB_MAP_AUTO && gb->io_registers[GB_IO_LCDC] & 0x08)) { map = 0x1c00; } if (tileset_type == GB_TILESET_AUTO) { tileset_type = (gb->io_registers[GB_IO_LCDC] & 0x10)? GB_TILESET_8800 : GB_TILESET_8000; } for (unsigned y = 0; y < 256; y++) { for (unsigned x = 0; x < 256; x++) { uint8_t tile = gb->vram[map + x/8 + y/8 * 32]; uint16_t tile_address; uint8_t attributes = 0; if (tileset_type == GB_TILESET_8800) { tile_address = tile * 0x10; } else { tile_address = (int8_t) tile * 0x10 + 0x1000; } if (gb->cgb_mode) { attributes = gb->vram[map + x/8 + y/8 * 32 + 0x2000]; } if (attributes & 0x8) { tile_address += 0x2000; } uint8_t pixel = (((gb->vram[tile_address + (((attributes & 0x40)? ~y : y) & 7) * 2 ] >> (((attributes & 0x20)? x : ~x)&7)) & 1 ) | ((gb->vram[tile_address + (((attributes & 0x40)? ~y : y) & 7) * 2 + 1] >> (((attributes & 0x20)? x : ~x)&7)) & 1) << 1); if (!gb->cgb_mode && (palette_type == GB_PALETTE_BACKGROUND || palette_type == GB_PALETTE_AUTO)) { pixel = ((gb->io_registers[GB_IO_BGP] >> (pixel << 1)) & 3); } if (palette) { *(dest++) = palette[pixel]; } else { *(dest++) = gb->background_palettes_rgb[(attributes & 7) * 4 + pixel]; } } } } uint8_t GB_get_oam_info(GB_gameboy_t *gb, GB_oam_info_t *dest, uint8_t *sprite_height) { uint8_t count = 0; *sprite_height = (gb->io_registers[GB_IO_LCDC] & 4) ? 16:8; uint8_t oam_to_dest_index[40] = {0,}; for (unsigned y = 0; y < LINES; y++) { GB_sprite_t *sprite = (GB_sprite_t *) &gb->oam; uint8_t sprites_in_line = 0; for (uint8_t i = 0; i < 40; i++, sprite++) { int sprite_y = sprite->y - 16; bool obscured = false; // Is sprite not in this line? if (sprite_y > y || sprite_y + *sprite_height <= y) continue; if (++sprites_in_line == 11) obscured = true; GB_oam_info_t *info = NULL; if (!oam_to_dest_index[i]) { info = dest + count; oam_to_dest_index[i] = ++count; info->x = sprite->x; info->y = sprite->y; info->tile = *sprite_height == 16? sprite->tile & 0xFE : sprite->tile; info->flags = sprite->flags; info->obscured_by_line_limit = false; info->oam_addr = 0xFE00 + i * sizeof(*sprite); } else { info = dest + oam_to_dest_index[i] - 1; } info->obscured_by_line_limit |= obscured; } } for (unsigned i = 0; i < count; i++) { uint16_t vram_address = dest[i].tile * 0x10; uint8_t flags = dest[i].flags; uint8_t palette = gb->cgb_mode? (flags & 7) : ((flags & 0x10)? 1 : 0); if (gb->is_cgb && (flags & 0x8)) { vram_address += 0x2000; } for (unsigned y = 0; y < *sprite_height; y++) { for (unsigned x = 0; x < 8; x++) { uint8_t color = (((gb->vram[vram_address ] >> ((~x)&7)) & 1 ) | ((gb->vram[vram_address + 1] >> ((~x)&7)) & 1) << 1 ); if (!gb->cgb_mode) { color = (gb->io_registers[palette? GB_IO_OBP1:GB_IO_OBP0] >> (color << 1)) & 3; } dest[i].image[((flags & 0x20)?7-x:x) + ((flags & 0x40)?*sprite_height - 1 -y:y) * 8] = gb->sprite_palettes_rgb[palette * 4 + color]; } vram_address += 2; } } return count; } /* Called when a write might enable or disable the window */ void GB_window_related_write(GB_gameboy_t *gb, uint8_t addr, uint8_t value) { bool before = window_enabled(gb); gb->io_registers[addr] = value; bool after = window_enabled(gb); if (before != after && gb->display_cycles < LINES * LINE_LENGTH) { /* Window was disabled or enabled outside of vblank */ uint8_t current_line = gb->display_cycles / LINE_LENGTH; if (current_line >= gb->io_registers[GB_IO_WY]) { if (after) { if (!gb->window_disabled_while_active) { /* Window was turned on for the first time this frame while LY > WY, should start window in the next line */ gb->wy_diff = current_line + 1 - gb->io_registers[GB_IO_WY]; } else { gb->wy_diff += current_line; } } else { gb->wy_diff -= current_line; gb->window_disabled_while_active = true; } } } }