#include #include #include #include #include "gb.h" /* Each line is 456 cycles, approximately: Mode 2 - 80 cycles / OAM Transfer Mode 3 - 172 cycles / Rendering Mode 0 - 204 cycles / HBlank Mode 1 is VBlank Todo: Mode lengths are not constants, see http://blog.kevtris.org/blogfiles/Nitty%20Gritty%20Gameboy%20VRAM%20Timing.txt */ #define MODE2_LENGTH (80) #define MODE3_LENGTH (172) #define MODE0_LENGTH (204) #define LINE_LENGTH (MODE2_LENGTH + MODE3_LENGTH + MODE0_LENGTH) // = 456 #define LINES (144) #define WIDTH (160) #define VIRTUAL_LINES (LCDC_PERIOD / LINE_LENGTH) // = 154 typedef struct __attribute__((packed)) { uint8_t y; uint8_t x; uint8_t tile; uint8_t flags; } GB_sprite_t; static bool window_enabled(GB_gameboy_t *gb) { if ((gb->io_registers[GB_IO_LCDC] & 0x1) == 0) { if (!gb->cgb_mode && gb->is_cgb) { return false; } } return (gb->io_registers[GB_IO_LCDC] & 0x20) && gb->io_registers[GB_IO_WX] < 167; } static uint32_t get_pixel(GB_gameboy_t *gb, uint8_t x, uint8_t y) { /* Bit 7 - LCD Display Enable (0=Off, 1=On) Bit 6 - Window Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF) Bit 5 - Window Display Enable (0=Off, 1=On) Bit 4 - BG & Window Tile Data Select (0=8800-97FF, 1=8000-8FFF) Bit 3 - BG Tile Map Display Select (0=9800-9BFF, 1=9C00-9FFF) Bit 2 - OBJ (Sprite) Size (0=8x8, 1=8x16) Bit 1 - OBJ (Sprite) Display Enable (0=Off, 1=On) Bit 0 - BG Display (for CGB see below) (0=Off, 1=On) */ uint16_t map = 0x1800; uint8_t tile = 0; uint8_t attributes = 0; uint8_t sprite_palette = 0; uint16_t tile_address = 0; uint8_t background_pixel = 0, sprite_pixel = 0; GB_sprite_t *sprite = (GB_sprite_t *) &gb->oam; uint8_t sprites_in_line = 0; bool lcd_8_16_mode = (gb->io_registers[GB_IO_LCDC] & 4) != 0; bool sprites_enabled = (gb->io_registers[GB_IO_LCDC] & 2) != 0; uint8_t lowest_sprite_x = 0xFF; bool use_obp1 = false, priority = false; bool in_window = false; bool bg_enabled = true; bool bg_behind = false; if ((gb->io_registers[GB_IO_LCDC] & 0x1) == 0) { if (gb->cgb_mode) { bg_behind = true; } else { bg_enabled = false; } } if (window_enabled(gb) && y >= gb->io_registers[GB_IO_WY] && x + 7 >= gb->io_registers[GB_IO_WX] && gb->current_window_line != 0xFF) { in_window = true; } if (sprites_enabled) { // Loop all sprites for (uint8_t i = 40; i--; sprite++) { int sprite_y = sprite->y - 16; int sprite_x = sprite->x - 8; // Is sprite in our line? if (sprite_y <= y && sprite_y + (lcd_8_16_mode? 16:8) > y) { uint8_t tile_x, tile_y, current_sprite_pixel; uint16_t line_address; // Limit to 10 sprites in one scan line. if (++sprites_in_line == 11) break; // Does not overlap our pixel. if (sprite_x > x || sprite_x + 8 <= x) continue; tile_x = x - sprite_x; tile_y = y - sprite_y; if (sprite->flags & 0x20) tile_x = 7 - tile_x; if (sprite->flags & 0x40) tile_y = (lcd_8_16_mode? 15:7) - tile_y; line_address = (lcd_8_16_mode? sprite->tile & 0xFE : sprite->tile) * 0x10 + tile_y * 2; if (gb->cgb_mode && (sprite->flags & 0x8)) { line_address += 0x2000; } current_sprite_pixel = (((gb->vram[line_address ] >> ((~tile_x)&7)) & 1 ) | ((gb->vram[line_address + 1] >> ((~tile_x)&7)) & 1) << 1 ); /* From Pandocs: When sprites with different x coordinate values overlap, the one with the smaller x coordinate (closer to the left) will have priority and appear above any others. This applies in Non CGB Mode only. When sprites with the same x coordinate values overlap, they have priority according to table ordering. (i.e. $FE00 - highest, $FE04 - next highest, etc.) In CGB Mode priorities are always assigned like this. */ if (current_sprite_pixel != 0) { if (!gb->cgb_mode && sprite->x >= lowest_sprite_x) { break; } sprite_pixel = current_sprite_pixel; lowest_sprite_x = sprite->x; use_obp1 = (sprite->flags & 0x10) != 0; sprite_palette = sprite->flags & 7; priority = (sprite->flags & 0x80) != 0; if (gb->cgb_mode) { break; } } } } } if (in_window) { x -= gb->io_registers[GB_IO_WX] - 7; // Todo: This value is probably latched y = gb->current_window_line; } else { x += gb->effective_scx; y += gb->io_registers[GB_IO_SCY]; } if (gb->io_registers[GB_IO_LCDC] & 0x08 && !in_window) { map = 0x1C00; } else if (gb->io_registers[GB_IO_LCDC] & 0x40 && in_window) { map = 0x1C00; } tile = gb->vram[map + x/8 + y/8 * 32]; if (gb->cgb_mode) { attributes = gb->vram[map + x/8 + y/8 * 32 + 0x2000]; } if (attributes & 0x80) { priority = !bg_behind && bg_enabled; } if (!priority && sprite_pixel) { if (!gb->cgb_mode) { sprite_pixel = (gb->io_registers[use_obp1? GB_IO_OBP1:GB_IO_OBP0] >> (sprite_pixel << 1)) & 3; sprite_palette = use_obp1; } return gb->sprite_palettes_rgb[sprite_palette * 4 + sprite_pixel]; } if (bg_enabled) { if (gb->io_registers[GB_IO_LCDC] & 0x10) { tile_address = tile * 0x10; } else { tile_address = (int8_t) tile * 0x10 + 0x1000; } if (attributes & 0x8) { tile_address += 0x2000; } if (attributes & 0x20) { x = ~x; } if (attributes & 0x40) { y = ~y; } background_pixel = (((gb->vram[tile_address + (y & 7) * 2 ] >> ((~x)&7)) & 1 ) | ((gb->vram[tile_address + (y & 7) * 2 + 1] >> ((~x)&7)) & 1) << 1 ); } if (priority && sprite_pixel && !background_pixel) { if (!gb->cgb_mode) { sprite_pixel = (gb->io_registers[use_obp1? GB_IO_OBP1:GB_IO_OBP0] >> (sprite_pixel << 1)) & 3; sprite_palette = use_obp1; } return gb->sprite_palettes_rgb[sprite_palette * 4 + sprite_pixel]; } if (!gb->cgb_mode) { background_pixel = ((gb->io_registers[GB_IO_BGP] >> (background_pixel << 1)) & 3); } return gb->background_palettes_rgb[(attributes & 7) * 4 + background_pixel]; } static void display_vblank(GB_gameboy_t *gb) { if (gb->turbo) { if (GB_timing_sync_turbo(gb)) { return; } } if (!gb->disable_rendering && ((!(gb->io_registers[GB_IO_LCDC] & 0x80) || gb->stopped) || gb->frame_skip_state == GB_FRAMESKIP_LCD_TURNED_ON)) { /* LCD is off, set screen to white */ uint32_t white = gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); for (unsigned i = 0; i < WIDTH * LINES; i++) { gb ->screen[i] = white; } } gb->vblank_callback(gb); GB_timing_sync(gb); gb->vblank_just_occured = true; } static inline uint8_t scale_channel(uint8_t x) { x &= 0x1f; return (x << 3) | (x >> 2); } void GB_palette_changed(GB_gameboy_t *gb, bool background_palette, uint8_t index) { uint8_t *palette_data = background_palette? gb->background_palettes_data : gb->sprite_palettes_data; uint16_t color = palette_data[index & ~1] | (palette_data[index | 1] << 8); // No need to &, scale channel does that. uint8_t r = scale_channel(color); uint8_t g = scale_channel(color >> 5); uint8_t b = scale_channel(color >> 10); assert (gb->rgb_encode_callback); (background_palette? gb->background_palettes_rgb : gb->sprite_palettes_rgb)[index / 2] = gb->rgb_encode_callback(gb, r, g, b); } /* STAT interrupt is implemented based on this finding: http://board.byuu.org/phpbb3/viewtopic.php?p=25527#p25531 General timing is based on GiiBiiAdvance's documents: https://github.com/AntonioND/giibiiadvance */ static void update_display_state(GB_gameboy_t *gb, uint8_t cycles) { uint8_t previous_stat_interrupt_line = gb->stat_interrupt_line; gb->stat_interrupt_line = false; if (!(gb->io_registers[GB_IO_LCDC] & 0x80)) { /* LCD is disabled, state is constant */ /* When the LCD is off, LY is 0 and STAT mode is 0. Todo: Verify the LY=LYC flag should be on. */ gb->io_registers[GB_IO_LY] = 0; gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 4; if (gb->hdma_on_hblank) { gb->hdma_on_hblank = false; gb->hdma_on = false; /* Todo: is this correct? */ gb->hdma_steps_left = 0xff; } gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; /* Keep sending vblanks to user even if the screen is off */ gb->display_cycles += cycles; if (gb->display_cycles >= LCDC_PERIOD) { /* VBlank! */ gb->display_cycles -= LCDC_PERIOD; display_vblank(gb); } /* Reset window rendering state */ gb->current_window_line = 0xFF; return; } uint8_t atomic_increase = gb->cgb_double_speed? 2 : 4; uint8_t stat_delay = gb->cgb_double_speed? 2 : (gb->cgb_mode? 0 : 4); /* Todo: This is correct for DMG. Is it correct for the 3 CGB modes (DMG/single/double)?*/ uint8_t scx_delay = ((gb->effective_scx & 7) + atomic_increase - 1) & ~(atomic_increase - 1); /* Todo: These are correct for DMG, DMG-mode CGB, and single speed CGB. Is is correct for double speed CGB? */ uint8_t oam_blocking_rush = gb->cgb_double_speed? 2 : 4; uint8_t vram_blocking_rush = gb->is_cgb? 0 : 4; for (; cycles; cycles -= atomic_increase) { gb->display_cycles += atomic_increase; /* The very first line is 2 (4 from the CPU's perseptive) clocks shorter when the LCD turns on. Todo: Verify on the 3 CGB modes, especially double speed mode. */ if (gb->first_scanline && gb->display_cycles >= LINE_LENGTH - atomic_increase) { gb->first_scanline = false; gb->display_cycles += atomic_increase; } bool should_compare_ly = true; uint8_t ly_for_comparison = gb->io_registers[GB_IO_LY] = gb->display_cycles / LINE_LENGTH; /* Handle cycle completion. STAT's initial value depends on model and mode */ if (gb->display_cycles == LCDC_PERIOD) { /* VBlank! */ gb->display_cycles = 0; gb->io_registers[GB_IO_STAT] &= ~3; if (gb->is_cgb) { if (stat_delay) { gb->io_registers[GB_IO_STAT] |= 1; } else { gb->io_registers[GB_IO_STAT] |= 2; } } ly_for_comparison = gb->io_registers[GB_IO_LY] = 0; /* Todo: verify timing */ gb->oam_read_blocked = true; gb->vram_read_blocked = false; gb->oam_write_blocked = true; gb->vram_write_blocked = false; /* Reset window rendering state */ gb->current_window_line = 0xFF; } /* Entered VBlank state, update STAT and IF */ else if (gb->display_cycles == LINES * LINE_LENGTH + stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 1; gb->io_registers[GB_IO_IF] |= 1; /* Entering VBlank state triggers the OAM interrupt. In CGB, it happens 4 cycles earlier */ if (gb->io_registers[GB_IO_STAT] & 0x20 && !gb->is_cgb) { gb->stat_interrupt_line = true; } if (gb->frame_skip_state == GB_FRAMESKIP_LCD_TURNED_ON) { if (!gb->is_cgb) { display_vblank(gb); gb->frame_skip_state = GB_FRAMESKIP_SECOND_FRAME_RENDERED; } else { gb->frame_skip_state = GB_FRAMESKIP_FIRST_FRAME_SKIPPED; } } else { gb->frame_skip_state = GB_FRAMESKIP_SECOND_FRAME_RENDERED; display_vblank(gb); } } /* Handle line 0 right after turning the LCD on */ else if (gb->first_scanline) { /* OAM and VRAM blocking is not rushed in the very first scanline */ if (gb->display_cycles == atomic_increase) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; } else if (gb->display_cycles == MODE2_LENGTH) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 3; gb->oam_read_blocked = true; gb->vram_read_blocked = true; gb->oam_write_blocked = true; gb->vram_write_blocked = true; } else if (gb->display_cycles == MODE2_LENGTH + MODE3_LENGTH) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; } } /* Handle STAT changes for lines 0-143 */ else if (gb->display_cycles < LINES * LINE_LENGTH) { unsigned position_in_line = gb->display_cycles % LINE_LENGTH; /* Handle OAM and VRAM blocking */ /* Todo: verify CGB timing for write blocking */ if (position_in_line == stat_delay - oam_blocking_rush || // In case stat_delay is 0 (position_in_line == LINE_LENGTH + stat_delay - oam_blocking_rush && gb->io_registers[GB_IO_LY] != 143)) { gb->oam_read_blocked = true; gb->oam_write_blocked = gb->is_cgb; } else if (position_in_line == MODE2_LENGTH + stat_delay - vram_blocking_rush) { gb->vram_read_blocked = true; gb->vram_write_blocked = gb->is_cgb; } if (position_in_line == stat_delay) { gb->oam_write_blocked = true; } else if (!gb->is_cgb && position_in_line == MODE2_LENGTH + stat_delay - oam_blocking_rush) { gb->oam_write_blocked = false; } else if (position_in_line == MODE2_LENGTH + stat_delay) { gb->vram_write_blocked = true; gb->oam_write_blocked = true; } /* Handle everything else */ if (position_in_line == stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 2; if (window_enabled(gb) && gb->display_cycles / LINE_LENGTH >= gb->io_registers[GB_IO_WY]) { gb->current_window_line++; } } else if (position_in_line == 0 && gb->display_cycles != 0) { should_compare_ly = gb->is_cgb; ly_for_comparison--; } else if (position_in_line == MODE2_LENGTH + stat_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->io_registers[GB_IO_STAT] |= 3; gb->effective_scx = gb->io_registers[GB_IO_SCX]; gb->previous_lcdc_x = - (gb->effective_scx & 0x7); /* Todo: This works on both 007 - The World Is Not Enough and Donkey Kong 94, but should be verified better */ if (window_enabled(gb) && gb->display_cycles / LINE_LENGTH == gb->io_registers[GB_IO_WY] && gb->current_window_line == 0xFF) { gb->current_window_line = 0; } } else if (position_in_line == MODE2_LENGTH + MODE3_LENGTH + stat_delay + scx_delay) { gb->io_registers[GB_IO_STAT] &= ~3; gb->oam_read_blocked = false; gb->vram_read_blocked = false; gb->oam_write_blocked = false; gb->vram_write_blocked = false; if (gb->hdma_on_hblank) { gb->hdma_on = true; gb->hdma_cycles = 0; } } } /* Line 153 is special */ else if (gb->display_cycles >= (VIRTUAL_LINES - 1) * LINE_LENGTH) { /* DMG */ if (!gb->is_cgb) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: should_compare_ly = false; break; case 4: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = VIRTUAL_LINES - 1; break; case 8: gb->io_registers[GB_IO_LY] = 0; should_compare_ly = false; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* CGB in DMG mode */ else if (!gb->cgb_mode) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: ly_for_comparison = VIRTUAL_LINES - 2; break; case 4: break; case 8: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* Single speed CGB */ else if (!gb->cgb_double_speed) { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: break; case 4: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } /* Double speed CGB */ else { switch (gb->display_cycles - (VIRTUAL_LINES - 1) * LINE_LENGTH) { case 0: ly_for_comparison = VIRTUAL_LINES - 2; break; case 2: case 4: break; case 6: case 8: gb->io_registers[GB_IO_LY] = 0; break; default: gb->io_registers[GB_IO_LY] = 0; ly_for_comparison = 0; } } } /* Lines 144 - 152 */ else { if (stat_delay && gb->display_cycles % LINE_LENGTH == 0) { should_compare_ly = gb->is_cgb; ly_for_comparison--; } } /* Set LY=LYC bit */ if (should_compare_ly && (ly_for_comparison == gb->io_registers[GB_IO_LYC])) { gb->io_registers[GB_IO_STAT] |= 4; } else { gb->io_registers[GB_IO_STAT] &= ~4; } if (!gb->stat_interrupt_line) { switch (gb->io_registers[GB_IO_STAT] & 3) { case 0: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 8; break; case 1: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x10; break; case 2: gb->stat_interrupt_line = gb->io_registers[GB_IO_STAT] & 0x20; break; } /* Use requested a LY=LYC interrupt and the LY=LYC bit is on */ if ((gb->io_registers[GB_IO_STAT] & 0x44) == 0x44) { gb->stat_interrupt_line = true; } } } /* On the CGB, the last cycle of line 144 triggers an OAM interrupt Todo: Verify timing for CGB in CGB mode and double speed CGB */ if (gb->is_cgb && gb->display_cycles == LINES * LINE_LENGTH + stat_delay - atomic_increase && (gb->io_registers[GB_IO_STAT] & 0x20)) { gb->stat_interrupt_line = true; } if (gb->stat_interrupt_line && !previous_stat_interrupt_line) { gb->io_registers[GB_IO_IF] |= 2; } /* The value of LY is glitched in the last cycle of every line in CGB mode CGB in single speed This is based on GiiBiiAdvance's docs */ if (gb->cgb_mode && !gb->cgb_double_speed && gb->display_cycles % LINE_LENGTH == LINE_LENGTH - 4) { uint8_t glitch_pattern[] = {0, 0, 2, 0, 4, 4, 6, 0, 8}; if ((gb->io_registers[GB_IO_LY] & 0xF) == 0xF) { gb->io_registers[GB_IO_LY] = glitch_pattern[gb->io_registers[GB_IO_LY] >> 4] << 4; } else { gb->io_registers[GB_IO_LY] = glitch_pattern[gb->io_registers[GB_IO_LY] & 7] | (gb->io_registers[GB_IO_LY] & 0xF8); } } } void GB_display_run(GB_gameboy_t *gb, uint8_t cycles) { update_display_state(gb, cycles); if (gb->disable_rendering) { return; } /* Display controller bug: For some reason, the OAM STAT interrupt is called, as expected, for LY = 0..143. However, it is also called from LY = 144. See http://forums.nesdev.com/viewtopic.php?f=20&t=13727 */ if (!(gb->io_registers[GB_IO_LCDC] & 0x80)) { /* LCD is disabled, do nothing */ return; } if (gb->display_cycles >= LINE_LENGTH * 144) { /* VBlank */ return; } uint8_t effective_ly = gb->display_cycles / LINE_LENGTH; if (gb->display_cycles % LINE_LENGTH < MODE2_LENGTH) { /* Mode 2 */ return; } /* Render */ /* Todo: it appears that the actual rendering starts 4 cycles after mode 3 starts. Is this correct? */ int16_t current_lcdc_x = gb->display_cycles % LINE_LENGTH - MODE2_LENGTH - (gb->effective_scx & 0x7) - 4; for (;gb->previous_lcdc_x < current_lcdc_x; gb->previous_lcdc_x++) { if (gb->previous_lcdc_x >= WIDTH) { continue; } if (gb->previous_lcdc_x < 0) { continue; } gb->screen[effective_ly * WIDTH + gb->previous_lcdc_x] = get_pixel(gb, gb->previous_lcdc_x, effective_ly); } } void GB_draw_tileset(GB_gameboy_t *gb, uint32_t *dest, GB_palette_type_t palette_type, uint8_t palette_index) { uint32_t none_palette[4]; uint32_t *palette = NULL; switch (gb->is_cgb? palette_type : GB_PALETTE_NONE) { default: case GB_PALETTE_NONE: none_palette[0] = gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); none_palette[1] = gb->rgb_encode_callback(gb, 0xAA, 0xAA, 0xAA); none_palette[2] = gb->rgb_encode_callback(gb, 0x55, 0x55, 0x55); none_palette[3] = gb->rgb_encode_callback(gb, 0, 0, 0 ); palette = none_palette; break; case GB_PALETTE_BACKGROUND: palette = gb->background_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_OAM: palette = gb->sprite_palettes_rgb + (4 * (palette_index & 7)); break; } for (unsigned y = 0; y < 192; y++) { for (unsigned x = 0; x < 256; x++) { if (x >= 128 && !gb->is_cgb) { *(dest++) = gb->background_palettes_rgb[0]; continue; } uint16_t tile = (x % 128) / 8 + y / 8 * 16; uint16_t tile_address = tile * 0x10 + (x >= 128? 0x2000 : 0); uint8_t pixel = (((gb->vram[tile_address + (y & 7) * 2 ] >> ((~x)&7)) & 1 ) | ((gb->vram[tile_address + (y & 7) * 2 + 1] >> ((~x)&7)) & 1) << 1); if (!gb->cgb_mode) { if (palette_type == GB_PALETTE_BACKGROUND) { pixel = ((gb->io_registers[GB_IO_BGP] >> (pixel << 1)) & 3); } else if (!gb->cgb_mode) { if (palette_type == GB_PALETTE_OAM) { pixel = ((gb->io_registers[palette_index == 0? GB_IO_OBP0 : GB_IO_OBP1] >> (pixel << 1)) & 3); } } } *(dest++) = palette[pixel]; } } } void GB_draw_tilemap(GB_gameboy_t *gb, uint32_t *dest, GB_palette_type_t palette_type, uint8_t palette_index, GB_map_type_t map_type, GB_tileset_type_t tileset_type) { uint32_t none_palette[4]; uint32_t *palette = NULL; uint16_t map = 0x1800; switch (gb->is_cgb? palette_type : GB_PALETTE_NONE) { case GB_PALETTE_NONE: none_palette[0] = gb->rgb_encode_callback(gb, 0xFF, 0xFF, 0xFF); none_palette[1] = gb->rgb_encode_callback(gb, 0xAA, 0xAA, 0xAA); none_palette[2] = gb->rgb_encode_callback(gb, 0x55, 0x55, 0x55); none_palette[3] = gb->rgb_encode_callback(gb, 0, 0, 0 ); palette = none_palette; break; case GB_PALETTE_BACKGROUND: palette = gb->background_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_OAM: palette = gb->sprite_palettes_rgb + (4 * (palette_index & 7)); break; case GB_PALETTE_AUTO: break; } if (map_type == GB_MAP_9C00 || (map_type == GB_MAP_AUTO && gb->io_registers[GB_IO_LCDC] & 0x08)) { map = 0x1c00; } if (tileset_type == GB_TILESET_AUTO) { tileset_type = (gb->io_registers[GB_IO_LCDC] & 0x10)? GB_TILESET_8800 : GB_TILESET_8000; } for (unsigned y = 0; y < 256; y++) { for (unsigned x = 0; x < 256; x++) { uint8_t tile = gb->vram[map + x/8 + y/8 * 32]; uint16_t tile_address; uint8_t attributes = 0; if (tileset_type == GB_TILESET_8800) { tile_address = tile * 0x10; } else { tile_address = (int8_t) tile * 0x10 + 0x1000; } if (gb->cgb_mode) { attributes = gb->vram[map + x/8 + y/8 * 32 + 0x2000]; } if (attributes & 0x8) { tile_address += 0x2000; } uint8_t pixel = (((gb->vram[tile_address + (((attributes & 0x40)? ~y : y) & 7) * 2 ] >> (((attributes & 0x20)? x : ~x)&7)) & 1 ) | ((gb->vram[tile_address + (((attributes & 0x40)? ~y : y) & 7) * 2 + 1] >> (((attributes & 0x20)? x : ~x)&7)) & 1) << 1); if (!gb->cgb_mode && (palette_type == GB_PALETTE_BACKGROUND || palette_type == GB_PALETTE_AUTO)) { pixel = ((gb->io_registers[GB_IO_BGP] >> (pixel << 1)) & 3); } if (palette) { *(dest++) = palette[pixel]; } else { *(dest++) = gb->background_palettes_rgb[(attributes & 7) * 4 + pixel]; } } } } uint8_t GB_get_oam_info(GB_gameboy_t *gb, GB_oam_info_t *dest, uint8_t *sprite_height) { uint8_t count = 0; *sprite_height = (gb->io_registers[GB_IO_LCDC] & 4) ? 16:8; uint8_t oam_to_dest_index[40] = {0,}; for (unsigned y = 0; y < LINES; y++) { GB_sprite_t *sprite = (GB_sprite_t *) &gb->oam; uint8_t sprites_in_line = 0; for (uint8_t i = 0; i < 40; i++, sprite++) { int sprite_y = sprite->y - 16; bool obscured = false; // Is sprite not in this line? if (sprite_y > y || sprite_y + *sprite_height <= y) continue; if (++sprites_in_line == 11) obscured = true; GB_oam_info_t *info = NULL; if (!oam_to_dest_index[i]) { info = dest + count; oam_to_dest_index[i] = ++count; info->x = sprite->x; info->y = sprite->y; info->tile = *sprite_height == 16? sprite->tile & 0xFE : sprite->tile; info->flags = sprite->flags; info->obscured_by_line_limit = false; info->oam_addr = 0xFE00 + i * sizeof(*sprite); } else { info = dest + oam_to_dest_index[i] - 1; } info->obscured_by_line_limit |= obscured; } } for (unsigned i = 0; i < count; i++) { uint16_t vram_address = dest[i].tile * 0x10; uint8_t flags = dest[i].flags; uint8_t palette = gb->cgb_mode? (flags & 7) : ((flags & 0x10)? 1 : 0); if (gb->is_cgb && (flags & 0x8)) { vram_address += 0x2000; } for (unsigned y = 0; y < *sprite_height; y++) { for (unsigned x = 0; x < 8; x++) { uint8_t color = (((gb->vram[vram_address ] >> ((~x)&7)) & 1 ) | ((gb->vram[vram_address + 1] >> ((~x)&7)) & 1) << 1 ); if (!gb->cgb_mode) { color = (gb->io_registers[palette? GB_IO_OBP1:GB_IO_OBP0] >> (color << 1)) & 3; } dest[i].image[((flags & 0x20)?7-x:x) + ((flags & 0x40)?*sprite_height - 1 -y:y) * 8] = gb->sprite_palettes_rgb[palette * 4 + color]; } vram_address += 2; } } return count; }