mgba-ps3/src/gba/gba-memory.c
2013-04-24 23:40:22 -07:00

603 lines
17 KiB
C

#include "gba-memory.h"
#include "gba-io.h"
#include "hle-bios.h"
#include <limits.h>
#include <string.h>
#include <sys/mman.h>
static const char* GBA_CANNOT_MMAP = "Could not map memory";
static void GBASetActiveRegion(struct ARMMemory* memory, uint32_t region);
static const char GBA_BASE_WAITSTATES[16] = { 0, 0, 2, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4 };
static const char GBA_BASE_WAITSTATES_SEQ[16] = { 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 4, 4, 8, 8, 4 };
static const char GBA_ROM_WAITSTATES[] = { 4, 3, 2, 8 };
static const char GBA_ROM_WAITSTATES_SEQ[] = { 2, 1, 4, 1, 8, 1 };
static const int DMA_OFFSET[] = { 1, -1, 0, 1 };
void GBAMemoryInit(struct GBAMemory* memory) {
memory->d.load32 = GBALoad32;
memory->d.load16 = GBALoad16;
memory->d.loadU16 = GBALoadU16;
memory->d.load8 = GBALoad8;
memory->d.loadU8 = GBALoadU8;
memory->d.store32 = GBAStore32;
memory->d.store16 = GBAStore16;
memory->d.store8 = GBAStore8;
memory->bios = (uint32_t*) hleBios;
memory->wram = mmap(0, SIZE_WORKING_RAM, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
memory->iwram = mmap(0, SIZE_WORKING_IRAM, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
memory->rom = 0;
memset(memory->io, 0, sizeof(memory->io));
memset(memory->dma, 0, sizeof(memory->dma));
if (!memory->wram || !memory->iwram) {
GBAMemoryDeinit(memory);
memory->p->errno = GBA_OUT_OF_MEMORY;
memory->p->errstr = GBA_CANNOT_MMAP;
}
int i;
for (i = 0; i < 16; ++i) {
memory->waitstates16[i] = GBA_BASE_WAITSTATES[i];
memory->waitstatesSeq16[i] = GBA_BASE_WAITSTATES_SEQ[i];
memory->waitstates32[i] = GBA_BASE_WAITSTATES[i] + GBA_BASE_WAITSTATES_SEQ[i] + 1;
memory->waitstatesSeq32[i] = GBA_BASE_WAITSTATES_SEQ[i] + GBA_BASE_WAITSTATES_SEQ[i] + 1;
}
for (; i < 256; ++i) {
memory->waitstates16[i] = 0;
memory->waitstatesSeq16[i] = 0;
memory->waitstates32[i] = 0;
memory->waitstatesSeq32[i] = 0;
}
memory->activeRegion = 0;
memory->d.activeRegion = 0;
memory->d.activeMask = 0;
memory->d.setActiveRegion = GBASetActiveRegion;
memory->d.activePrefetchCycles32 = 0;
memory->d.activePrefetchCycles16 = 0;
}
void GBAMemoryDeinit(struct GBAMemory* memory) {
munmap(memory->wram, SIZE_WORKING_RAM);
munmap(memory->iwram, SIZE_WORKING_IRAM);
}
static void GBASetActiveRegion(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
memory->activePrefetchCycles32 = gbaMemory->waitstates32[address >> BASE_OFFSET];
memory->activePrefetchCycles16 = gbaMemory->waitstates16[address >> BASE_OFFSET];
gbaMemory->activeRegion = address >> BASE_OFFSET;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
memory->activeRegion = gbaMemory->bios;
memory->activeMask = SIZE_BIOS - 1;
break;
case BASE_WORKING_RAM:
memory->activeRegion = gbaMemory->wram;
memory->activeMask = SIZE_WORKING_RAM - 1;
break;
case BASE_WORKING_IRAM:
memory->activeRegion = gbaMemory->iwram;
memory->activeMask = SIZE_WORKING_IRAM - 1;
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
memory->activeRegion = gbaMemory->rom;
memory->activeMask = SIZE_CART0 - 1;
break;
default:
memory->activeRegion = 0;
memory->activeMask = 0;
break;
}
}
int32_t GBALoad32(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
break;
case BASE_WORKING_RAM:
return gbaMemory->wram[(address & (SIZE_WORKING_RAM - 1)) >> 2];
case BASE_WORKING_IRAM:
return gbaMemory->iwram[(address & (SIZE_WORKING_IRAM - 1)) >> 2];
case BASE_IO:
return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1)) | (GBAIORead(gbaMemory->p, (address & (SIZE_IO - 1)) | 2) << 16);
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
return ((int32_t*) gbaMemory->p->video.vram)[(address & 0x0001FFFF) >> 2];
case BASE_OAM:
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
return gbaMemory->rom[(address & (SIZE_CART0 - 1)) >> 2];
case BASE_CART_SRAM:
break;
default:
break;
}
return 0;
}
int16_t GBALoad16(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
break;
case BASE_WORKING_RAM:
return ((int16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1];
case BASE_WORKING_IRAM:
return ((int16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1];
case BASE_IO:
return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1));
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
return gbaMemory->p->video.vram[(address & 0x0001FFFF) >> 1];
case BASE_OAM:
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
return ((int16_t*) gbaMemory->rom)[(address & (SIZE_CART0 - 1)) >> 1];
case BASE_CART_SRAM:
break;
default:
break;
}
return 0;
}
uint16_t GBALoadU16(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
break;
case BASE_WORKING_RAM:
return ((uint16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1];
case BASE_WORKING_IRAM:
return ((uint16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1];
case BASE_IO:
return GBAIORead(gbaMemory->p, address & (SIZE_IO - 1));
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
return gbaMemory->p->video.vram[(address & 0x0001FFFF) >> 1];
case BASE_OAM:
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
return ((uint16_t*) gbaMemory->rom)[(address & (SIZE_CART0 - 1)) >> 1];
case BASE_CART_SRAM:
break;
default:
break;
}
return 0;
}
int8_t GBALoad8(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
break;
case BASE_WORKING_RAM:
return ((int8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)];
case BASE_WORKING_IRAM:
return ((int8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)];
case BASE_IO:
break;
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
break;
case BASE_OAM:
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
return ((int8_t*) gbaMemory->rom)[address & (SIZE_CART0 - 1)];
case BASE_CART_SRAM:
break;
default:
break;
}
return 0;
}
uint8_t GBALoadU8(struct ARMMemory* memory, uint32_t address) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_BIOS:
break;
case BASE_WORKING_RAM:
return ((uint8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)];
break;
case BASE_WORKING_IRAM:
return ((uint8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)];
break;
case BASE_IO:
return (GBAIORead(gbaMemory->p, address & 0xFFFE) >> ((address & 0x0001) << 3)) & 0xFF;
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
break;
case BASE_OAM:
break;
case BASE_CART0:
case BASE_CART0_EX:
case BASE_CART1:
case BASE_CART1_EX:
case BASE_CART2:
case BASE_CART2_EX:
return ((uint8_t*) gbaMemory->rom)[address & (SIZE_CART0 - 1)];
case BASE_CART_SRAM:
break;
default:
break;
}
return 0;
}
void GBAStore32(struct ARMMemory* memory, uint32_t address, int32_t value) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_WORKING_RAM:
gbaMemory->wram[(address & (SIZE_WORKING_RAM - 1)) >> 2] = value;
break;
case BASE_WORKING_IRAM:
gbaMemory->iwram[(address & (SIZE_WORKING_IRAM - 1)) >> 2] = value;
break;
case BASE_IO:
GBAIOWrite32(gbaMemory->p, address & (SIZE_IO - 1), value);
break;
case BASE_PALETTE_RAM:
((int32_t*) gbaMemory->p->video.palette)[(address & (SIZE_PALETTE_RAM - 1)) >> 2] = value;
break;
case BASE_VRAM:
if ((address & OFFSET_MASK) < SIZE_VRAM - 2) {
((int32_t*) gbaMemory->p->video.vram)[(address & 0x0001FFFF) >> 2] = value;
}
break;
case BASE_OAM:
((int32_t*) gbaMemory->p->video.oam.raw)[(address & (SIZE_OAM - 1)) >> 2] = value;
break;
case BASE_CART0:
break;
case BASE_CART2_EX:
break;
case BASE_CART_SRAM:
break;
default:
break;
}
}
void GBAStore16(struct ARMMemory* memory, uint32_t address, int16_t value) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_WORKING_RAM:
((int16_t*) gbaMemory->wram)[(address & (SIZE_WORKING_RAM - 1)) >> 1] = value;
break;
case BASE_WORKING_IRAM:
((int16_t*) gbaMemory->iwram)[(address & (SIZE_WORKING_IRAM - 1)) >> 1] = value;
break;
case BASE_IO:
GBAIOWrite(gbaMemory->p, address & (SIZE_IO - 1), value);
break;
case BASE_PALETTE_RAM:
gbaMemory->p->video.palette[(address & (SIZE_PALETTE_RAM - 1)) >> 1] = value;
break;
case BASE_VRAM:
if ((address & OFFSET_MASK) < SIZE_VRAM) {
gbaMemory->p->video.vram[(address & 0x0001FFFF) >> 1] = value;
}
break;
case BASE_OAM:
gbaMemory->p->video.oam.raw[(address & (SIZE_OAM - 1)) >> 1] = value;
break;
case BASE_CART0:
break;
case BASE_CART2_EX:
break;
case BASE_CART_SRAM:
break;
default:
break;
}
}
void GBAStore8(struct ARMMemory* memory, uint32_t address, int8_t value) {
struct GBAMemory* gbaMemory = (struct GBAMemory*) memory;
switch (address & ~OFFSET_MASK) {
case BASE_WORKING_RAM:
((int8_t*) gbaMemory->wram)[address & (SIZE_WORKING_RAM - 1)] = value;
break;
case BASE_WORKING_IRAM:
((int8_t*) gbaMemory->iwram)[address & (SIZE_WORKING_IRAM - 1)] = value;
break;
case BASE_IO:
break;
case BASE_PALETTE_RAM:
break;
case BASE_VRAM:
break;
case BASE_OAM:
break;
case BASE_CART0:
break;
case BASE_CART2_EX:
break;
case BASE_CART_SRAM:
break;
default:
break;
}
}
void GBAAdjustWaitstates(struct GBAMemory* memory, uint16_t parameters) {
int sram = parameters & 0x0003;
int ws0 = (parameters & 0x000C) >> 2;
int ws0seq = (parameters & 0x0010) >> 4;
int ws1 = (parameters & 0x0060) >> 5;
int ws1seq = (parameters & 0x0080) >> 7;
int ws2 = (parameters & 0x0300) >> 8;
int ws2seq = (parameters & 0x0400) >> 10;
int prefetch = parameters & 0x4000;
memory->waitstates16[REGION_CART_SRAM] = GBA_ROM_WAITSTATES[sram];
memory->waitstatesSeq16[REGION_CART_SRAM] = GBA_ROM_WAITSTATES[sram];
memory->waitstates32[REGION_CART_SRAM] = 2 * GBA_ROM_WAITSTATES[sram] + 1;
memory->waitstatesSeq32[REGION_CART_SRAM] = 2 * GBA_ROM_WAITSTATES[sram] + 1;
memory->waitstates16[REGION_CART0] = memory->waitstates16[REGION_CART0_EX] = GBA_ROM_WAITSTATES[ws0];
memory->waitstates16[REGION_CART1] = memory->waitstates16[REGION_CART1_EX] = GBA_ROM_WAITSTATES[ws1];
memory->waitstates16[REGION_CART2] = memory->waitstates16[REGION_CART2_EX] = GBA_ROM_WAITSTATES[ws2];
memory->waitstatesSeq16[REGION_CART0] = memory->waitstatesSeq16[REGION_CART0_EX] = GBA_ROM_WAITSTATES_SEQ[ws0seq];
memory->waitstatesSeq16[REGION_CART1] = memory->waitstatesSeq16[REGION_CART1_EX] = GBA_ROM_WAITSTATES_SEQ[ws1seq + 2];
memory->waitstatesSeq16[REGION_CART2] = memory->waitstatesSeq16[REGION_CART2_EX] = GBA_ROM_WAITSTATES_SEQ[ws2seq + 4];
memory->waitstates32[REGION_CART0] = memory->waitstates32[REGION_CART0_EX] = memory->waitstates16[REGION_CART0] + 1 + memory->waitstatesSeq16[REGION_CART0];
memory->waitstates32[REGION_CART1] = memory->waitstates32[REGION_CART1_EX] = memory->waitstates16[REGION_CART1] + 1 + memory->waitstatesSeq16[REGION_CART1];
memory->waitstates32[REGION_CART2] = memory->waitstates32[REGION_CART2_EX] = memory->waitstates16[REGION_CART2] + 1 + memory->waitstatesSeq16[REGION_CART2];
memory->waitstatesSeq32[REGION_CART0] = memory->waitstatesSeq32[REGION_CART0 + 1] = 2 * memory->waitstatesSeq16[REGION_CART0] + 1;
memory->waitstatesSeq32[REGION_CART1] = memory->waitstatesSeq32[REGION_CART1 + 1] = 2 * memory->waitstatesSeq16[REGION_CART1] + 1;
memory->waitstatesSeq32[REGION_CART2] = memory->waitstatesSeq32[REGION_CART2 + 1] = 2 * memory->waitstatesSeq16[REGION_CART2] + 1;
memory->d.activePrefetchCycles32 = memory->waitstates32[memory->activeRegion];
memory->d.activePrefetchCycles16 = memory->waitstates16[memory->activeRegion];
}
int32_t GBAMemoryProcessEvents(struct GBAMemory* memory, int32_t cycles) {
struct GBADMA* dma;
int32_t test = INT_MAX;
dma = &memory->dma[0];
dma->nextIRQ -= cycles;
if (dma->enable && dma->doIrq && dma->nextIRQ) {
if (dma->nextIRQ <= 0) {
dma->nextIRQ = INT_MAX;
GBARaiseIRQ(memory->p, IRQ_DMA0);
} else if (dma->nextIRQ < test) {
test = dma->nextIRQ;
}
}
dma = &memory->dma[1];
dma->nextIRQ -= cycles;
if (dma->enable && dma->doIrq && dma->nextIRQ) {
if (dma->nextIRQ <= 0) {
dma->nextIRQ = INT_MAX;
GBARaiseIRQ(memory->p, IRQ_DMA1);
} else if (dma->nextIRQ < test) {
test = dma->nextIRQ;
}
}
dma = &memory->dma[2];
dma->nextIRQ -= cycles;
if (dma->enable && dma->doIrq && dma->nextIRQ) {
if (dma->nextIRQ <= 0) {
dma->nextIRQ = INT_MAX;
GBARaiseIRQ(memory->p, IRQ_DMA2);
} else if (dma->nextIRQ < test) {
test = dma->nextIRQ;
}
}
dma = &memory->dma[3];
dma->nextIRQ -= cycles;
if (dma->enable && dma->doIrq && dma->nextIRQ) {
if (dma->nextIRQ <= 0) {
dma->nextIRQ = INT_MAX;
GBARaiseIRQ(memory->p, IRQ_DMA3);
} else if (dma->nextIRQ < test) {
test = dma->nextIRQ;
}
}
return test;
}
void GBAMemoryWriteDMASAD(struct GBAMemory* memory, int dma, uint32_t address) {
memory->dma[dma].source = address & 0xFFFFFFFE;
}
void GBAMemoryWriteDMADAD(struct GBAMemory* memory, int dma, uint32_t address) {
memory->dma[dma].dest = address & 0xFFFFFFFE;
}
void GBAMemoryWriteDMACNT_LO(struct GBAMemory* memory, int dma, uint16_t count) {
memory->dma[dma].count = count ? count : (dma == 3 ? 0x10000 : 0x4000);
}
uint16_t GBAMemoryWriteDMACNT_HI(struct GBAMemory* memory, int dma, uint16_t control) {
struct GBADMA* currentDma = &memory->dma[dma];
int wasEnabled = currentDma->enable;
currentDma->packed = control;
currentDma->nextIRQ = 0;
if (currentDma->drq) {
GBALog(GBA_LOG_STUB, "DRQ not implemented");
}
if (!wasEnabled && currentDma->enable) {
currentDma->nextSource = currentDma->source;
currentDma->nextDest = currentDma->dest;
currentDma->nextCount = currentDma->count;
GBAMemoryScheduleDMA(memory, dma, currentDma);
}
// If the DMA has already occurred, this value might have changed since the function started
return currentDma->packed;
};
void GBAMemoryScheduleDMA(struct GBAMemory* memory, int number, struct GBADMA* info) {
switch (info->timing) {
case DMA_TIMING_NOW:
GBAMemoryServiceDMA(memory, number, info);
break;
case DMA_TIMING_HBLANK:
// Handled implicitly
break;
case DMA_TIMING_VBLANK:
// Handled implicitly
break;
case DMA_TIMING_CUSTOM:
switch (number) {
case 0:
GBALog(GBA_LOG_WARN, "Discarding invalid DMA0 scheduling");
break;
case 1:
case 2:
//this.cpu.irq.audio.scheduleFIFODma(number, info);
break;
case 3:
//this.cpu.irq.video.scheduleVCaptureDma(dma, info);
break;
}
}
}
void GBAMemoryRunHblankDMAs(struct GBAMemory* memory) {
struct GBADMA* dma;
int i;
for (i = 0; i < 4; ++i) {
dma = &memory->dma[i];
if (dma->enable && dma->timing == DMA_TIMING_HBLANK) {
GBAMemoryServiceDMA(memory, i, dma);
}
}
}
void GBAMemoryRunVblankDMAs(struct GBAMemory* memory) {
struct GBADMA* dma;
int i;
for (i = 0; i < 4; ++i) {
dma = &memory->dma[i];
if (dma->enable && dma->timing == DMA_TIMING_VBLANK) {
GBAMemoryServiceDMA(memory, i, dma);
}
}
}
void GBAMemoryServiceDMA(struct GBAMemory* memory, int number, struct GBADMA* info) {
if (!info->enable) {
// There was a DMA scheduled that got canceled
return;
}
uint32_t width = info->width ? 4 : 2;
int sourceOffset = DMA_OFFSET[info->srcControl] * width;
int destOffset = DMA_OFFSET[info->dstControl] * width;
int32_t wordsRemaining = info->nextCount;
uint32_t source = info->nextSource;
uint32_t dest = info->nextDest;
uint32_t sourceRegion = source >> BASE_OFFSET;
uint32_t destRegion = dest >> BASE_OFFSET;
if (width == 4) {
int32_t word;
source &= 0xFFFFFFFC;
dest &= 0xFFFFFFFC;
while (wordsRemaining--) {
word = GBALoad32(&memory->d, source);
GBAStore32(&memory->d, dest, word);
source += sourceOffset;
dest += destOffset;
}
} else {
uint16_t word;
while (wordsRemaining--) {
word = GBALoadU16(&memory->d, source);
GBAStore16(&memory->d, dest, word);
source += sourceOffset;
dest += destOffset;
}
}
if (info->doIrq) {
info->nextIRQ = memory->p->cpu.cycles + 2;
info->nextIRQ += (width == 4 ? memory->waitstates32[sourceRegion] + memory->waitstates32[destRegion]
: memory->waitstates16[sourceRegion] + memory->waitstates16[destRegion]);
info->nextIRQ += (info->count - 1) * (width == 4 ? memory->waitstatesSeq32[sourceRegion] + memory->waitstatesSeq32[destRegion]
: memory->waitstatesSeq16[sourceRegion] + memory->waitstatesSeq16[destRegion]);
}
info->nextSource = source;
info->nextDest = dest;
info->nextCount = wordsRemaining;
if (!info->repeat) {
info->enable = 0;
// Clear the enable bit in memory
memory->io[(REG_DMA0CNT_HI + number * (REG_DMA1CNT_HI - REG_DMA0CNT_HI)) >> 1] &= 0x7FE0;
} else {
info->nextCount = info->count;
if (info->dstControl == DMA_INCREMENT_RELOAD) {
info->nextDest = info->dest;
}
GBAMemoryScheduleDMA(memory, number, info);
}
}