mgba-ps3/src/gb/gb.c

1234 lines
32 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gb/gb.h>
#include <mgba/internal/defines.h>
#include <mgba/internal/gb/io.h>
#include <mgba/internal/gb/mbc.h>
#include <mgba/internal/sm83/sm83.h>
#include <mgba/core/core.h>
#include <mgba/core/cheats.h>
#include <mgba-util/crc32.h>
#include <mgba-util/memory.h>
#include <mgba-util/math.h>
#include <mgba-util/patch.h>
#include <mgba-util/vfs.h>
const uint32_t CGB_SM83_FREQUENCY = 0x800000;
const uint32_t SGB_SM83_FREQUENCY = 0x418B1E;
const uint32_t GB_COMPONENT_MAGIC = 0x400000;
static const uint8_t _knownHeader[4] = {0xCE, 0xED, 0x66, 0x66};
static const uint8_t _knownHeaderSachen[4] = {0x7C, 0xE7, 0xC0, 0x00};
static const uint8_t _registeredTrademark[] = {0x3C, 0x42, 0xB9, 0xA5, 0xB9, 0xA5, 0x42, 0x3C};
#define DMG0_BIOS_CHECKSUM 0xC2F5CC97
#define DMG_BIOS_CHECKSUM 0x59C8598E
#define MGB_BIOS_CHECKSUM 0xE6920754
#define SGB_BIOS_CHECKSUM 0xEC8A83B9
#define SGB2_BIOS_CHECKSUM 0X53D0DD63
#define CGB_BIOS_CHECKSUM 0x41884E46
#define CGB0_BIOS_CHECKSUM 0xE8EF5318
#define AGB_BIOS_CHECKSUM 0xFFD6B0F1
mLOG_DEFINE_CATEGORY(GB, "GB", "gb");
static void GBInit(void* cpu, struct mCPUComponent* component);
static void GBDeinit(struct mCPUComponent* component);
static void GBInterruptHandlerInit(struct SM83InterruptHandler* irqh);
static void GBProcessEvents(struct SM83Core* cpu);
static void GBSetInterrupts(struct SM83Core* cpu, bool enable);
static uint16_t GBIRQVector(struct SM83Core* cpu);
static void GBIllegal(struct SM83Core* cpu);
static void GBStop(struct SM83Core* cpu);
static void _enableInterrupts(struct mTiming* timing, void* user, uint32_t cyclesLate);
void GBCreate(struct GB* gb) {
gb->d.id = GB_COMPONENT_MAGIC;
gb->d.init = GBInit;
gb->d.deinit = GBDeinit;
}
static void GBInit(void* cpu, struct mCPUComponent* component) {
struct GB* gb = (struct GB*) component;
gb->cpu = cpu;
gb->sync = NULL;
GBInterruptHandlerInit(&gb->cpu->irqh);
GBMemoryInit(gb);
gb->video.p = gb;
GBVideoInit(&gb->video);
gb->audio.p = gb;
GBAudioInit(&gb->audio, 2048, &gb->memory.io[GB_REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant
gb->sio.p = gb;
GBSIOInit(&gb->sio);
gb->timer.p = gb;
gb->model = GB_MODEL_AUTODETECT;
gb->biosVf = NULL;
gb->romVf = NULL;
gb->sramVf = NULL;
gb->sramRealVf = NULL;
gb->isPristine = false;
gb->pristineRomSize = 0;
gb->yankedRomSize = 0;
memset(&gb->gbx, 0, sizeof(gb->gbx));
mCoreCallbacksListInit(&gb->coreCallbacks, 0);
gb->stream = NULL;
mTimingInit(&gb->timing, &gb->cpu->cycles, &gb->cpu->nextEvent);
gb->audio.timing = &gb->timing;
gb->eiPending.name = "GB EI";
gb->eiPending.callback = _enableInterrupts;
gb->eiPending.context = gb;
gb->eiPending.priority = 0;
}
static void GBDeinit(struct mCPUComponent* component) {
struct GB* gb = (struct GB*) component;
mTimingDeinit(&gb->timing);
}
bool GBLoadGBX(struct GBXMetadata* metadata, struct VFile* vf) {
uint8_t footer[16];
if (vf->seek(vf, -sizeof(footer), SEEK_END) < 0) {
return false;
}
if (vf->read(vf, footer, sizeof(footer)) < (ssize_t) sizeof(footer)) {
return false;
}
int32_t gbxSize = 0;
uint32_t vers;
LOAD_32BE(gbxSize, 0, footer);
LOAD_32BE(vers, 4, footer);
if (memcmp(&footer[12], "GBX!", 4) != 0 || gbxSize != 0x40 || vers != 1) {
return false;
}
if (vf->seek(vf, -gbxSize, SEEK_END) < 0) {
return false;
}
if (vf->read(vf, footer, sizeof(footer)) != (ssize_t) sizeof(footer)) {
return false;
}
memset(metadata, 0, sizeof(*metadata));
metadata->mbc = GBMBCFromGBX(footer);
if (footer[4] == 1) {
metadata->battery = true;
}
if (footer[5] == 1) {
metadata->rumble = true;
if (metadata->mbc == GB_MBC5) {
metadata->mbc = GB_MBC5_RUMBLE;
}
}
if (footer[6] == 1) {
metadata->timer = true;
if (metadata->mbc == GB_MBC3) {
metadata->mbc = GB_MBC3_RTC;
}
}
LOAD_32BE(metadata->romSize, 8, footer);
LOAD_32BE(metadata->ramSize, 12, footer);
vf->read(vf, &metadata->mapperVars, 0x20);
// There's no dedicated mapper type for MBC1M so let's stash some data here
if (memcmp(footer, "MBC1", 4) == 0) {
metadata->mapperVars.u8[0] = 5;
} else if (memcmp(footer, "MB1M", 4) == 0) {
metadata->mapperVars.u8[0] = 4;
}
return true;
}
bool GBLoadROM(struct GB* gb, struct VFile* vf) {
if (!vf) {
return false;
}
GBUnloadROM(gb);
if (!GBLoadGBX(&gb->gbx, vf)) {
// GBX handles the pristine size itself, but other formats don't
gb->pristineRomSize = vf->size(vf);
} else {
uint32_t fileSize = vf->size(vf);
if (gb->gbx.romSize <= fileSize - 0x40) {
gb->pristineRomSize = gb->gbx.romSize;
} else {
// TODO: Should we make a temporary buffer?
mLOG(GB, WARN, "GBX file size %d is larger than real file size %d", gb->gbx.romSize, fileSize - 0x40);
gb->pristineRomSize = fileSize - 0x40;
}
}
gb->romVf = vf;
vf->seek(vf, 0, SEEK_SET);
gb->isPristine = true;
gb->memory.rom = vf->map(vf, gb->pristineRomSize, MAP_READ);
if (!gb->memory.rom) {
return false;
}
gb->yankedRomSize = 0;
gb->memory.romSize = gb->pristineRomSize;
gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
GBMBCReset(gb);
if (gb->cpu) {
struct SM83Core* cpu = gb->cpu;
if (!gb->memory.romBase) {
GBMBCSwitchBank0(gb, 0);
}
cpu->memory.setActiveRegion(cpu, cpu->pc);
}
// TODO: error check
return true;
}
void GBYankROM(struct GB* gb) {
gb->yankedRomSize = gb->memory.romSize;
gb->yankedMbc = gb->memory.mbcType;
gb->memory.romSize = 0;
gb->memory.mbcType = GB_MBC_NONE;
GBMBCReset(gb);
if (gb->cpu) {
struct SM83Core* cpu = gb->cpu;
cpu->memory.setActiveRegion(cpu, cpu->pc);
}
}
static void GBSramDeinit(struct GB* gb) {
if (gb->sramVf) {
gb->sramVf->unmap(gb->sramVf, gb->memory.sram, gb->sramSize);
if (gb->sramVf == gb->sramRealVf) {
if (gb->memory.mbcType == GB_MBC3_RTC) {
GBMBCRTCWrite(gb);
} else if (gb->memory.mbcType == GB_HuC3) {
GBMBCHuC3Write(gb);
} else if (gb->memory.mbcType == GB_TAMA5) {
GBMBCTAMA5Write(gb);
}
}
gb->sramVf = NULL;
} else if (gb->memory.sram) {
mappedMemoryFree(gb->memory.sram, gb->sramSize);
}
gb->memory.sram = 0;
}
bool GBLoadSave(struct GB* gb, struct VFile* vf) {
GBSramDeinit(gb);
gb->sramVf = vf;
if (gb->sramRealVf && gb->sramRealVf != vf) {
gb->sramRealVf->close(gb->sramRealVf);
}
gb->sramRealVf = vf;
if (gb->sramSize) {
GBResizeSram(gb, gb->sramSize);
GBMBCSwitchSramBank(gb, gb->memory.sramCurrentBank);
if (gb->memory.mbcType == GB_MBC3_RTC) {
GBMBCRTCRead(gb);
} else if (gb->memory.mbcType == GB_HuC3) {
GBMBCHuC3Read(gb);
} else if (gb->memory.mbcType == GB_TAMA5) {
GBMBCTAMA5Read(gb);
}
}
return vf;
}
void GBResizeSram(struct GB* gb, size_t size) {
if (gb->memory.sram && size <= gb->sramSize) {
return;
}
struct VFile* vf = gb->sramVf;
if (vf) {
// We have a vf
ssize_t vfSize = vf->size(vf);
if (vf == gb->sramRealVf) {
// This is the real save file, not a masked one
if (vfSize >= 0 && (size_t) vfSize < size) {
// We need to grow the file
// Make sure to copy the footer data, if any
uint8_t extdataBuffer[0x100];
if (vfSize & 0xFF) {
vf->seek(vf, -(vfSize & 0xFF), SEEK_END);
vf->read(vf, extdataBuffer, vfSize & 0xFF);
}
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
gb->memory.sram = NULL;
}
vf->truncate(vf, size + (vfSize & 0xFF));
if (vfSize & 0xFF) {
vf->seek(vf, size, SEEK_SET);
vf->write(vf, extdataBuffer, vfSize & 0xFF);
}
if (size) {
gb->memory.sram = vf->map(vf, size, MAP_WRITE);
memset(&gb->memory.sram[vfSize], 0xFF, size - vfSize);
}
} else if (size > gb->sramSize || !gb->memory.sram) {
// We aren't growing the file, but we are changing our mapping of it
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
gb->memory.sram = NULL;
}
if (size) {
gb->memory.sram = vf->map(vf, size, MAP_WRITE);
}
}
} else {
// This is a masked save file
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
}
if ((vfSize <= 0 && size) || (size_t) vfSize < size) {
// The loaded mask file is too small. Since these can be read-only,
// we need to make a new one of the right size
if (vfSize < 0) {
vfSize = 0;
}
gb->sramVf = VFileMemChunk(NULL, size);
uint8_t* sram = gb->sramVf->map(gb->sramVf, size, MAP_WRITE);
if (vfSize > 0) {
vf->seek(vf, 0, SEEK_SET);
vf->read(vf, sram, vfSize);
}
memset(&sram[vfSize], 0xFF, size - vfSize);
gb->sramVf->unmap(gb->sramVf, sram, size);
vf->close(vf);
vf = gb->sramVf;
}
if (size) {
gb->memory.sram = vf->map(vf, size, MAP_READ);
}
}
if (!size || gb->memory.sram == (void*) -1) {
gb->memory.sram = NULL;
}
} else if (size) {
// There's no vf, so let's make it only memory-backed
// TODO: Investigate just using a VFileMemChunk instead of this hybrid approach
uint8_t* newSram = anonymousMemoryMap(size);
if (gb->memory.sram) {
if (size > gb->sramSize) {
memcpy(newSram, gb->memory.sram, gb->sramSize);
memset(&newSram[gb->sramSize], 0xFF, size - gb->sramSize);
} else {
memcpy(newSram, gb->memory.sram, size);
}
mappedMemoryFree(gb->memory.sram, gb->sramSize);
} else {
memset(newSram, 0xFF, size);
}
gb->memory.sram = newSram;
}
if (gb->sramSize < size) {
gb->sramSize = size;
}
}
void GBSramClean(struct GB* gb, uint32_t frameCount) {
// TODO: Share with GBASavedataClean
if (!gb->sramVf) {
return;
}
if (mSavedataClean(&gb->sramDirty, &gb->sramDirtAge, frameCount)) {
if (gb->sramMaskWriteback) {
GBSavedataUnmask(gb);
}
if (gb->memory.mbcType == GB_MBC3_RTC) {
GBMBCRTCWrite(gb);
} else if (gb->memory.mbcType == GB_HuC3) {
GBMBCHuC3Write(gb);
} else if (gb->memory.mbcType == GB_TAMA5) {
GBMBCTAMA5Write(gb);
}
if (gb->sramVf == gb->sramRealVf) {
if (gb->memory.sram && gb->sramVf->sync(gb->sramVf, gb->memory.sram, gb->sramSize)) {
mLOG(GB_MEM, INFO, "Savedata synced");
} else {
mLOG(GB_MEM, INFO, "Savedata failed to sync!");
}
}
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);
if (callbacks->savedataUpdated) {
callbacks->savedataUpdated(callbacks->context);
}
}
}
}
void GBSavedataMask(struct GB* gb, struct VFile* vf, bool writeback) {
struct VFile* oldVf = gb->sramVf;
GBSramDeinit(gb);
if (oldVf && oldVf != gb->sramRealVf) {
oldVf->close(oldVf);
}
gb->sramVf = vf;
gb->sramMaskWriteback = writeback;
GBResizeSram(gb, gb->sramSize);
GBMBCSwitchSramBank(gb, gb->memory.sramCurrentBank);
}
void GBSavedataUnmask(struct GB* gb) {
if (!gb->sramRealVf || gb->sramVf == gb->sramRealVf) {
return;
}
struct VFile* vf = gb->sramVf;
GBSramDeinit(gb);
gb->sramVf = gb->sramRealVf;
gb->memory.sram = gb->sramVf->map(gb->sramVf, gb->sramSize, MAP_WRITE);
if (gb->sramMaskWriteback) {
vf->seek(vf, 0, SEEK_SET);
vf->read(vf, gb->memory.sram, gb->sramSize);
gb->sramMaskWriteback = false;
}
GBMBCSwitchSramBank(gb, gb->memory.sramCurrentBank);
vf->close(vf);
}
void GBUnloadROM(struct GB* gb) {
// TODO: Share with GBAUnloadROM
off_t romBase = gb->memory.romBase - gb->memory.rom;
if (romBase >= 0 && ((size_t) romBase < gb->memory.romSize || (size_t) romBase < gb->yankedRomSize)) {
gb->memory.romBase = NULL;
}
if (gb->memory.rom && !gb->isPristine) {
if (gb->yankedRomSize) {
gb->yankedRomSize = 0;
}
mappedMemoryFree(gb->memory.rom, GB_SIZE_CART_MAX);
}
if (gb->romVf) {
#ifndef FIXED_ROM_BUFFER
if (gb->isPristine && gb->memory.rom) {
gb->romVf->unmap(gb->romVf, gb->memory.rom, gb->pristineRomSize);
}
#endif
gb->romVf->close(gb->romVf);
gb->romVf = NULL;
}
gb->memory.rom = NULL;
gb->memory.mbcType = GB_MBC_AUTODETECT;
gb->isPristine = false;
if (!gb->sramDirty) {
gb->sramMaskWriteback = false;
}
GBSavedataUnmask(gb);
GBSramDeinit(gb);
if (gb->sramRealVf) {
gb->sramRealVf->close(gb->sramRealVf);
}
gb->sramRealVf = NULL;
gb->sramVf = NULL;
if (gb->memory.cam && gb->memory.cam->stopRequestImage) {
gb->memory.cam->stopRequestImage(gb->memory.cam);
}
}
void GBSynthesizeROM(struct VFile* vf) {
if (!vf) {
return;
}
const struct GBCartridge cart = {
.logo = { _knownHeader[0], _knownHeader[1], _knownHeader[2], _knownHeader[3]}
};
vf->seek(vf, 0x100, SEEK_SET);
vf->write(vf, &cart, sizeof(cart));
}
void GBLoadBIOS(struct GB* gb, struct VFile* vf) {
gb->biosVf = vf;
}
void GBApplyPatch(struct GB* gb, struct Patch* patch) {
size_t patchedSize = patch->outputSize(patch, gb->memory.romSize);
if (!patchedSize) {
return;
}
if (patchedSize > GB_SIZE_CART_MAX) {
patchedSize = GB_SIZE_CART_MAX;
}
const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
uint8_t type = cart->type;
void* newRom = anonymousMemoryMap(GB_SIZE_CART_MAX);
if (!patch->applyPatch(patch, gb->memory.rom, gb->pristineRomSize, newRom, patchedSize)) {
mappedMemoryFree(newRom, GB_SIZE_CART_MAX);
return;
}
if (gb->romVf) {
#ifndef FIXED_ROM_BUFFER
gb->romVf->unmap(gb->romVf, gb->memory.rom, gb->pristineRomSize);
#endif
gb->romVf->close(gb->romVf);
gb->romVf = NULL;
}
gb->isPristine = false;
if (gb->memory.romBase == gb->memory.rom) {
gb->memory.romBase = newRom;
}
gb->memory.rom = newRom;
gb->memory.romSize = patchedSize;
cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
if (cart->type != type) {
gb->memory.mbcType = GB_MBC_AUTODETECT;
GBMBCInit(gb);
}
gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
}
void GBDestroy(struct GB* gb) {
GBUnmapBIOS(gb);
GBUnloadROM(gb);
if (gb->biosVf) {
gb->biosVf->close(gb->biosVf);
gb->biosVf = 0;
}
GBMemoryDeinit(gb);
GBAudioDeinit(&gb->audio);
GBVideoDeinit(&gb->video);
GBSIODeinit(&gb->sio);
mCoreCallbacksListDeinit(&gb->coreCallbacks);
}
void GBInterruptHandlerInit(struct SM83InterruptHandler* irqh) {
irqh->reset = GBReset;
irqh->processEvents = GBProcessEvents;
irqh->setInterrupts = GBSetInterrupts;
irqh->irqVector = GBIRQVector;
irqh->hitIllegal = GBIllegal;
irqh->stop = GBStop;
irqh->halt = GBHalt;
}
static uint32_t _GBBiosCRC32(struct VFile* vf) {
ssize_t size = vf->size(vf);
if (size <= 0 || size > GB_SIZE_CART_BANK0) {
return 0;
}
void* bios = vf->map(vf, size, MAP_READ);
uint32_t biosCrc = doCrc32(bios, size);
vf->unmap(vf, bios, size);
return biosCrc;
}
bool GBIsBIOS(struct VFile* vf) {
switch (_GBBiosCRC32(vf)) {
case DMG_BIOS_CHECKSUM:
case DMG0_BIOS_CHECKSUM:
case MGB_BIOS_CHECKSUM:
case SGB_BIOS_CHECKSUM:
case SGB2_BIOS_CHECKSUM:
case CGB_BIOS_CHECKSUM:
case CGB0_BIOS_CHECKSUM:
case AGB_BIOS_CHECKSUM:
return true;
default:
return false;
}
}
bool GBIsCompatibleBIOS(struct VFile* vf, enum GBModel model) {
switch (_GBBiosCRC32(vf)) {
case DMG_BIOS_CHECKSUM:
case DMG0_BIOS_CHECKSUM:
case MGB_BIOS_CHECKSUM:
case SGB_BIOS_CHECKSUM:
case SGB2_BIOS_CHECKSUM:
return model < GB_MODEL_CGB;
case CGB_BIOS_CHECKSUM:
case CGB0_BIOS_CHECKSUM:
case AGB_BIOS_CHECKSUM:
return model >= GB_MODEL_CGB;
default:
return false;
}
}
void GBReset(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
gb->memory.romBase = gb->memory.rom;
GBDetectModel(gb);
cpu->b = 0;
cpu->d = 0;
gb->timer.internalDiv = 0;
gb->cpuBlocked = false;
gb->earlyExit = false;
gb->doubleSpeed = 0;
if (gb->yankedRomSize) {
gb->memory.romSize = gb->yankedRomSize;
gb->memory.mbcType = gb->yankedMbc;
gb->yankedRomSize = 0;
}
gb->sgbBit = -1;
gb->sgbControllers = 0;
gb->sgbCurrentController = 0;
gb->currentSgbBits = 0;
gb->sgbIncrement = false;
memset(gb->sgbPacket, 0, sizeof(gb->sgbPacket));
mTimingClear(&gb->timing);
GBMemoryReset(gb);
if (gb->biosVf) {
if (!GBIsCompatibleBIOS(gb->biosVf, gb->model)) {
gb->biosVf->close(gb->biosVf);
gb->biosVf = NULL;
} else {
GBMapBIOS(gb);
cpu->a = 0;
cpu->f.packed = 0;
cpu->c = 0;
cpu->e = 0;
cpu->h = 0;
cpu->l = 0;
cpu->sp = 0;
cpu->pc = 0;
}
}
switch (gb->model) {
case GB_MODEL_DMG:
case GB_MODEL_SGB:
case GB_MODEL_AUTODETECT: //Silence warnings
gb->audio.style = GB_AUDIO_DMG;
break;
case GB_MODEL_MGB:
case GB_MODEL_SGB2:
gb->audio.style = GB_AUDIO_MGB;
break;
case GB_MODEL_AGB:
case GB_MODEL_CGB:
case GB_MODEL_SCGB:
gb->audio.style = GB_AUDIO_CGB;
break;
}
GBVideoReset(&gb->video);
GBTimerReset(&gb->timer);
GBIOReset(gb);
GBAudioReset(&gb->audio);
if (!gb->biosVf && gb->memory.rom) {
GBSkipBIOS(gb);
} else {
mTimingSchedule(&gb->timing, &gb->timer.event, 0);
}
GBSIOReset(&gb->sio);
cpu->memory.setActiveRegion(cpu, cpu->pc);
gb->sramMaskWriteback = false;
GBSavedataUnmask(gb);
}
void GBSkipBIOS(struct GB* gb) {
struct SM83Core* cpu = gb->cpu;
const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
int nextDiv = 0;
switch (gb->model) {
case GB_MODEL_AUTODETECT: // Silence warnings
gb->model = GB_MODEL_DMG;
// Fall through
case GB_MODEL_DMG:
cpu->a = 1;
cpu->f.packed = 0xB0;
cpu->c = 0x13;
cpu->e = 0xD8;
cpu->h = 1;
cpu->l = 0x4D;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_SGB:
cpu->a = 1;
cpu->f.packed = 0x00;
cpu->c = 0x14;
cpu->e = 0x00;
cpu->h = 0xC0;
cpu->l = 0x60;
gb->timer.internalDiv = 0xD85;
nextDiv = 8;
break;
case GB_MODEL_MGB:
cpu->a = 0xFF;
cpu->f.packed = 0xB0;
cpu->c = 0x13;
cpu->e = 0xD8;
cpu->h = 1;
cpu->l = 0x4D;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_SGB2:
cpu->a = 0xFF;
cpu->f.packed = 0x00;
cpu->c = 0x14;
cpu->e = 0x00;
cpu->h = 0xC0;
cpu->l = 0x60;
gb->timer.internalDiv = 0xD84;
nextDiv = 8;
break;
case GB_MODEL_AGB:
cpu->b = 1;
// Fall through
case GB_MODEL_CGB:
case GB_MODEL_SCGB:
cpu->a = 0x11;
if (gb->model == GB_MODEL_AGB) {
cpu->f.packed = 0x00;
} else {
cpu->f.packed = 0x80;
}
cpu->c = 0;
cpu->h = 0;
if (cart->cgb & 0x80) {
cpu->d = 0xFF;
cpu->e = 0x56;
cpu->l = 0x0D;
gb->timer.internalDiv = 0x2F0;
} else {
cpu->e = 0x08;
cpu->l = 0x7C;
gb->timer.internalDiv = 0x260;
gb->model = GB_MODEL_DMG;
gb->memory.io[GB_REG_KEY1] = 0xFF;
gb->memory.io[GB_REG_BCPS] = 0x88; // Faked writing 4 BG palette entries
gb->memory.io[GB_REG_OCPS] = 0x90; // Faked writing 8 OBJ palette entries
gb->memory.io[GB_REG_SVBK] = 0xFF;
GBVideoDisableCGB(&gb->video);
}
nextDiv = 0xC;
break;
}
unsigned i;
for (i = 0; i < sizeof(cart->logo); ++i) {
uint8_t byte = GBLoad8(cpu, 0x104 + i);
uint8_t output0 = 0;
uint8_t output1 = 0;
output0 |= (byte & 0x80) >> 0;
output0 |= (byte & 0x40) >> 1;
output0 |= (byte & 0x20) >> 2;
output0 |= (byte & 0x10) >> 3;
output0 |= output0 >> 1;
output1 |= (byte & 0x08) << 3;
output1 |= (byte & 0x04) << 2;
output1 |= (byte & 0x02) << 1;
output1 |= (byte & 0x01) << 0;
output1 |= output1 << 1;
GBPatch8(cpu, 0x8010 + i * 8, output0, NULL, 0);
GBPatch8(cpu, 0x8012 + i * 8, output0, NULL, 0);
GBPatch8(cpu, 0x8014 + i * 8, output1, NULL, 0);
GBPatch8(cpu, 0x8016 + i * 8, output1, NULL, 0);
}
for (i = 0; i < sizeof(_registeredTrademark); ++i) {
GBPatch8(cpu, 0x8190 + i * 2, _registeredTrademark[i], NULL, 0);
}
if (gb->model < GB_MODEL_CGB) {
for (i = 0; i < 12; ++i) {
GBPatch8(cpu, 0x9904 + i, i + 1, NULL, 0);
GBPatch8(cpu, 0x9924 + i, i + 13, NULL, 0);
}
GBPatch8(cpu, 0x9910, 0x19, NULL, 0);
}
if (gb->memory.mbcType == GB_UNL_SACHEN_MMC2) {
gb->memory.mbcState.sachen.locked = GB_SACHEN_UNLOCKED;
}
cpu->sp = 0xFFFE;
cpu->pc = 0x100;
gb->timer.nextDiv = GB_DMG_DIV_PERIOD * (16 - nextDiv);
mTimingDeschedule(&gb->timing, &gb->timer.event);
mTimingSchedule(&gb->timing, &gb->timer.event, gb->timer.nextDiv);
if (gb->biosVf) {
GBUnmapBIOS(gb);
}
GBIOWrite(gb, GB_REG_NR52, 0xF1);
GBIOWrite(gb, GB_REG_NR14, 0x3F);
GBIOWrite(gb, GB_REG_NR10, 0x80);
GBIOWrite(gb, GB_REG_NR11, 0xBF);
GBIOWrite(gb, GB_REG_NR12, 0xF3);
GBIOWrite(gb, GB_REG_NR13, 0xF3);
GBIOWrite(gb, GB_REG_NR24, 0x3F);
GBIOWrite(gb, GB_REG_NR21, 0x3F);
GBIOWrite(gb, GB_REG_NR22, 0x00);
GBIOWrite(gb, GB_REG_NR34, 0x3F);
GBIOWrite(gb, GB_REG_NR30, 0x7F);
GBIOWrite(gb, GB_REG_NR31, 0xFF);
GBIOWrite(gb, GB_REG_NR32, 0x9F);
GBIOWrite(gb, GB_REG_NR44, 0x3F);
GBIOWrite(gb, GB_REG_NR41, 0xFF);
GBIOWrite(gb, GB_REG_NR42, 0x00);
GBIOWrite(gb, GB_REG_NR43, 0x00);
GBIOWrite(gb, GB_REG_NR50, 0x77);
GBIOWrite(gb, GB_REG_NR51, 0xF3);
GBIOWrite(gb, GB_REG_LCDC, 0x91);
gb->memory.io[GB_REG_BANK] = 0x1;
GBVideoSkipBIOS(&gb->video);
}
void GBMapBIOS(struct GB* gb) {
gb->biosVf->seek(gb->biosVf, 0, SEEK_SET);
gb->memory.romBase = malloc(GB_SIZE_CART_BANK0);
ssize_t size = gb->biosVf->read(gb->biosVf, gb->memory.romBase, GB_SIZE_CART_BANK0);
if (gb->memory.rom) {
memcpy(&gb->memory.romBase[size], &gb->memory.rom[size], GB_SIZE_CART_BANK0 - size);
if (size > 0x100) {
memcpy(&gb->memory.romBase[0x100], &gb->memory.rom[0x100], 0x100);
}
}
}
void GBUnmapBIOS(struct GB* gb) {
if (gb->memory.io[GB_REG_BANK] == 0xFF && gb->memory.romBase != gb->memory.rom) {
free(gb->memory.romBase);
if (gb->memory.mbcType == GB_MMM01) {
GBMBCSwitchBank0(gb, gb->memory.romSize / GB_SIZE_CART_BANK0 - 2);
} else {
GBMBCSwitchBank0(gb, 0);
}
}
// XXX: Force AGB registers for AGB-mode
if (gb->model == GB_MODEL_AGB && gb->cpu->pc == 0x100) {
gb->cpu->b = 1;
}
}
void GBDetectModel(struct GB* gb) {
if (gb->model != GB_MODEL_AUTODETECT) {
return;
}
if (gb->biosVf) {
switch (_GBBiosCRC32(gb->biosVf)) {
case DMG_BIOS_CHECKSUM:
case DMG0_BIOS_CHECKSUM:
gb->model = GB_MODEL_DMG;
break;
case MGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_MGB;
break;
case SGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_SGB;
break;
case SGB2_BIOS_CHECKSUM:
gb->model = GB_MODEL_SGB2;
break;
case CGB_BIOS_CHECKSUM:
case CGB0_BIOS_CHECKSUM:
gb->model = GB_MODEL_CGB;
break;
case AGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_AGB;
break;
default:
gb->biosVf->close(gb->biosVf);
gb->biosVf = NULL;
}
}
if (gb->model == GB_MODEL_AUTODETECT && gb->memory.rom) {
const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
if (cart->cgb & 0x80) {
gb->model = GB_MODEL_CGB;
} else if (cart->sgb == 0x03 && cart->oldLicensee == 0x33) {
gb->model = GB_MODEL_SGB;
} else {
gb->model = GB_MODEL_DMG;
}
}
}
int GBValidModels(const uint8_t* bank0) {
const struct GBCartridge* cart = (const struct GBCartridge*) &bank0[0x100];
int models;
if (cart->cgb == 0x80) {
models = GB_MODEL_CGB | GB_MODEL_MGB;
} else if (cart->cgb == 0xC0) {
models = GB_MODEL_CGB;
} else {
models = GB_MODEL_MGB;
}
if (cart->sgb == 0x03 && cart->oldLicensee == 0x33) {
models |= GB_MODEL_SGB;
}
return models;
}
void GBUpdateIRQs(struct GB* gb) {
int irqs = gb->memory.ie & gb->memory.io[GB_REG_IF] & 0x1F;
if (!irqs) {
gb->cpu->irqPending = false;
return;
}
gb->cpu->halted = false;
if (!gb->memory.ime) {
gb->cpu->irqPending = false;
return;
}
if (gb->cpu->irqPending) {
return;
}
SM83RaiseIRQ(gb->cpu);
}
static void _GBAdvanceCycles(struct GB* gb) {
struct SM83Core* cpu = gb->cpu;
int stateMask = (4 * (2 - gb->doubleSpeed)) - 1;
int stateOffset = ((cpu->nextEvent - cpu->cycles) & stateMask) >> !gb->doubleSpeed;
cpu->cycles = cpu->nextEvent;
cpu->executionState = (cpu->executionState + stateOffset) & 3;
}
void GBProcessEvents(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
bool wasHalted = cpu->halted;
while (true) {
do {
int32_t cycles = cpu->cycles;
int32_t nextEvent;
cpu->cycles = 0;
cpu->nextEvent = INT_MAX;
nextEvent = cycles;
do {
#ifdef USE_DEBUGGERS
gb->timing.globalCycles += nextEvent;
#endif
nextEvent = mTimingTick(&gb->timing, nextEvent);
} while (gb->cpuBlocked);
// This loop cannot early exit until the SM83 run loop properly handles mid-M-cycle-exits
cpu->nextEvent = nextEvent;
if (cpu->halted) {
_GBAdvanceCycles(gb);
if (!gb->memory.ie || !gb->memory.ime) {
break;
}
}
if (gb->earlyExit) {
break;
}
} while (cpu->cycles >= cpu->nextEvent);
if (gb->cpuBlocked) {
_GBAdvanceCycles(gb);
}
if (!wasHalted || (cpu->executionState & 3) == SM83_CORE_FETCH) {
break;
}
int nextFetch = (SM83_CORE_FETCH - cpu->executionState) * cpu->tMultiplier;
if (nextFetch < cpu->nextEvent) {
cpu->cycles += nextFetch;
cpu->executionState = SM83_CORE_FETCH;
break;
}
_GBAdvanceCycles(gb);
}
gb->earlyExit = false;
}
void GBSetInterrupts(struct SM83Core* cpu, bool enable) {
struct GB* gb = (struct GB*) cpu->master;
mTimingDeschedule(&gb->timing, &gb->eiPending);
if (!enable) {
gb->memory.ime = false;
GBUpdateIRQs(gb);
} else {
mTimingSchedule(&gb->timing, &gb->eiPending, 4 * cpu->tMultiplier);
}
}
uint16_t GBIRQVector(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
int irqs = gb->memory.ie & gb->memory.io[GB_REG_IF];
if (irqs & (1 << GB_IRQ_VBLANK)) {
gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_VBLANK);
return GB_VECTOR_VBLANK;
}
if (irqs & (1 << GB_IRQ_LCDSTAT)) {
gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_LCDSTAT);
return GB_VECTOR_LCDSTAT;
}
if (irqs & (1 << GB_IRQ_TIMER)) {
gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_TIMER);
return GB_VECTOR_TIMER;
}
if (irqs & (1 << GB_IRQ_SIO)) {
gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_SIO);
return GB_VECTOR_SIO;
}
if (irqs & (1 << GB_IRQ_KEYPAD)) {
gb->memory.io[GB_REG_IF] &= ~(1 << GB_IRQ_KEYPAD);
return GB_VECTOR_KEYPAD;
}
return 0;
}
static void _enableInterrupts(struct mTiming* timing, void* user, uint32_t cyclesLate) {
UNUSED(timing);
UNUSED(cyclesLate);
struct GB* gb = user;
gb->memory.ime = true;
GBUpdateIRQs(gb);
}
void GBHalt(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
if (!(gb->memory.ie & gb->memory.io[GB_REG_IF] & 0x1F)) {
_GBAdvanceCycles(gb);
cpu->executionState = (cpu->executionState - 1) & 3;
cpu->halted = true;
} else if (!gb->memory.ime) {
mLOG(GB, GAME_ERROR, "HALT bug");
cpu->executionState = SM83_CORE_HALT_BUG;
}
}
void GBStop(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
if (gb->model >= GB_MODEL_CGB && gb->memory.io[GB_REG_KEY1] & 1) {
gb->doubleSpeed ^= 1;
gb->cpu->tMultiplier = 2 - gb->doubleSpeed;
gb->memory.io[GB_REG_KEY1] = 0;
gb->memory.io[GB_REG_KEY1] |= gb->doubleSpeed << 7;
} else {
int sleep = ~(gb->memory.io[GB_REG_JOYP] & 0x30);
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);
if (sleep && callbacks->sleep) {
callbacks->sleep(callbacks->context);
} else if (callbacks->shutdown) {
callbacks->shutdown(callbacks->context);
}
}
}
}
void GBIllegal(struct SM83Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
mLOG(GB, GAME_ERROR, "Hit illegal opcode at address %04X:%02X", cpu->pc, cpu->bus);
#ifdef USE_DEBUGGERS
if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
struct mDebuggerEntryInfo info = {
.address = cpu->pc,
.type.bp.opcode = cpu->bus
};
mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
}
#endif
// Hang forever
gb->memory.ime = 0;
--cpu->pc;
}
bool GBIsROM(struct VFile* vf) {
if (!vf) {
return false;
}
vf->seek(vf, 0x100, SEEK_SET);
uint8_t header[0x100];
if (vf->read(vf, &header, sizeof(header)) < (ssize_t) sizeof(header)) {
return false;
}
if (memcmp(&header[4], _knownHeader, sizeof(_knownHeader)) == 0) {
return true;
}
if (memcmp(&header[4], _knownHeaderSachen, sizeof(_knownHeaderSachen)) == 0) {
// Sachen logo
return true;
}
if (header[0x04] == _knownHeader[0] && header[0x44] == _knownHeader[1] &&
header[0x14] == _knownHeader[2] && header[0x54] == _knownHeader[3]) {
// Sachen MMC1 scrambled header
return true;
}
if (header[0x04] == _knownHeaderSachen[0] && header[0x44] == _knownHeaderSachen[1] &&
header[0x14] == _knownHeaderSachen[2] && header[0x54] == _knownHeaderSachen[3]) {
// Sachen MMC2 scrambled header
return true;
}
uint8_t footer[16];
vf->seek(vf, -sizeof(footer), SEEK_END);
if (vf->read(vf, footer, sizeof(footer)) < (ssize_t) sizeof(footer)) {
return false;
}
uint32_t size;
uint32_t vers;
LOAD_32BE(size, 0, footer);
LOAD_32BE(vers, 4, footer);
if (memcmp(&footer[12], "GBX!", 4) == 0 && size == 0x40 && vers == 1) {
// GBX file
return true;
}
return false;
}
void GBGetGameTitle(const struct GB* gb, char* out) {
const struct GBCartridge* cart = NULL;
if (gb->memory.rom) {
cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
}
if (!cart) {
return;
}
if (cart->oldLicensee != 0x33) {
memcpy(out, cart->titleLong, 16);
} else {
memcpy(out, cart->titleShort, 11);
}
}
void GBGetGameCode(const struct GB* gb, char* out) {
memset(out, 0, 8);
const struct GBCartridge* cart = NULL;
if (gb->memory.rom) {
cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
}
if (!cart) {
return;
}
if (cart->cgb == 0xC0) {
memcpy(out, "CGB-????", 8);
} else {
memcpy(out, "DMG-????", 8);
}
if (cart->oldLicensee == 0x33) {
memcpy(&out[4], cart->maker, 4);
}
}
void GBFrameStarted(struct GB* gb) {
GBTestKeypadIRQ(gb);
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);
if (callbacks->videoFrameStarted) {
callbacks->videoFrameStarted(callbacks->context);
}
}
}
void GBFrameEnded(struct GB* gb) {
GBSramClean(gb, gb->video.frameCounter);
if (gb->cpu->components && gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE]) {
struct mCheatDevice* device = (struct mCheatDevice*) gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE];
size_t i;
for (i = 0; i < mCheatSetsSize(&device->cheats); ++i) {
struct mCheatSet* cheats = *mCheatSetsGetPointer(&device->cheats, i);
mCheatRefresh(device, cheats);
}
}
// TODO: Move to common code
if (gb->stream && gb->stream->postVideoFrame) {
const color_t* pixels;
size_t stride;
gb->video.renderer->getPixels(gb->video.renderer, &stride, (const void**) &pixels);
gb->stream->postVideoFrame(gb->stream, pixels, stride);
}
size_t c;
for (c = 0; c < mCoreCallbacksListSize(&gb->coreCallbacks); ++c) {
struct mCoreCallbacks* callbacks = mCoreCallbacksListGetPointer(&gb->coreCallbacks, c);
if (callbacks->videoFrameEnded) {
callbacks->videoFrameEnded(callbacks->context);
}
}
}
enum GBModel GBNameToModel(const char* model) {
if (strcasecmp(model, "DMG") == 0 || strcasecmp(model, "GB") == 0) {
return GB_MODEL_DMG;
} else if (strcasecmp(model, "CGB") == 0 || strcasecmp(model, "GBC") == 0) {
return GB_MODEL_CGB;
} else if (strcasecmp(model, "AGB") == 0 || strcasecmp(model, "GBA") == 0) {
return GB_MODEL_AGB;
} else if (strcasecmp(model, "SGB") == 0) {
return GB_MODEL_SGB;
} else if (strcasecmp(model, "MGB") == 0) {
return GB_MODEL_MGB;
} else if (strcasecmp(model, "SGB2") == 0) {
return GB_MODEL_SGB2;
} else if (strcasecmp(model, "SCGB") == 0 || strcasecmp(model, "SGBC") == 0) {
return GB_MODEL_SCGB;
}
return GB_MODEL_AUTODETECT;
}
const char* GBModelToName(enum GBModel model) {
switch (model) {
case GB_MODEL_DMG:
return "DMG";
case GB_MODEL_SGB:
return "SGB";
case GB_MODEL_MGB:
return "MGB";
case GB_MODEL_SGB2:
return "SGB2";
case GB_MODEL_CGB:
return "CGB";
case GB_MODEL_AGB:
return "AGB";
case GB_MODEL_SCGB:
return "SCGB";
default:
case GB_MODEL_AUTODETECT:
return NULL;
}
}