mgba-ps3/src/gb/gb.c

867 lines
21 KiB
C

/* Copyright (c) 2013-2016 Jeffrey Pfau
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <mgba/internal/gb/gb.h>
#include <mgba/internal/gb/io.h>
#include <mgba/internal/gb/mbc.h>
#include <mgba/internal/lr35902/lr35902.h>
#include <mgba/core/core.h>
#include <mgba/core/cheats.h>
#include <mgba-util/crc32.h>
#include <mgba-util/memory.h>
#include <mgba-util/math.h>
#include <mgba-util/patch.h>
#include <mgba-util/vfs.h>
#define CLEANUP_THRESHOLD 15
const uint32_t CGB_LR35902_FREQUENCY = 0x800000;
const uint32_t SGB_LR35902_FREQUENCY = 0x418B1E;
const uint32_t GB_COMPONENT_MAGIC = 0x400000;
static const uint8_t _knownHeader[4] = { 0xCE, 0xED, 0x66, 0x66};
#define DMG_BIOS_CHECKSUM 0xC2F5CC97
#define DMG_2_BIOS_CHECKSUM 0x59C8598E
#define MGB_BIOS_CHECKSUM 0xE6920754
#define SGB_BIOS_CHECKSUM 0xEC8A83B9
#define CGB_BIOS_CHECKSUM 0x41884E46
mLOG_DEFINE_CATEGORY(GB, "GB", "gb");
static void GBInit(void* cpu, struct mCPUComponent* component);
static void GBDeinit(struct mCPUComponent* component);
static void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh);
static void GBProcessEvents(struct LR35902Core* cpu);
static void GBSetInterrupts(struct LR35902Core* cpu, bool enable);
static uint16_t GBIRQVector(struct LR35902Core* cpu);
static void GBIllegal(struct LR35902Core* cpu);
static void GBStop(struct LR35902Core* cpu);
static void _enableInterrupts(struct mTiming* timing, void* user, uint32_t cyclesLate);
#ifdef FIXED_ROM_BUFFER
extern uint32_t* romBuffer;
extern size_t romBufferSize;
#endif
void GBCreate(struct GB* gb) {
gb->d.id = GB_COMPONENT_MAGIC;
gb->d.init = GBInit;
gb->d.deinit = GBDeinit;
}
static void GBInit(void* cpu, struct mCPUComponent* component) {
struct GB* gb = (struct GB*) component;
gb->cpu = cpu;
gb->sync = NULL;
GBInterruptHandlerInit(&gb->cpu->irqh);
GBMemoryInit(gb);
gb->video.p = gb;
GBVideoInit(&gb->video);
gb->audio.p = gb;
GBAudioInit(&gb->audio, 2048, &gb->memory.io[REG_NR52], GB_AUDIO_DMG); // TODO: Remove magic constant
gb->sio.p = gb;
GBSIOInit(&gb->sio);
gb->timer.p = gb;
gb->model = GB_MODEL_AUTODETECT;
gb->biosVf = NULL;
gb->romVf = NULL;
gb->sramVf = NULL;
gb->sramRealVf = NULL;
gb->isPristine = false;
gb->pristineRomSize = 0;
gb->yankedRomSize = 0;
mCoreCallbacksListInit(&gb->coreCallbacks, 0);
gb->stream = NULL;
mTimingInit(&gb->timing, &gb->cpu->cycles, &gb->cpu->nextEvent);
gb->audio.timing = &gb->timing;
gb->eiPending.name = "GB EI";
gb->eiPending.callback = _enableInterrupts;
gb->eiPending.context = gb;
gb->eiPending.priority = 0;
}
static void GBDeinit(struct mCPUComponent* component) {
struct GB* gb = (struct GB*) component;
mTimingDeinit(&gb->timing);
}
bool GBLoadROM(struct GB* gb, struct VFile* vf) {
if (!vf) {
return false;
}
GBUnloadROM(gb);
gb->romVf = vf;
gb->pristineRomSize = vf->size(vf);
vf->seek(vf, 0, SEEK_SET);
gb->isPristine = true;
#ifdef FIXED_ROM_BUFFER
if (gb->pristineRomSize <= romBufferSize) {
gb->memory.rom = romBuffer;
vf->read(vf, romBuffer, gb->pristineRomSize);
}
#else
gb->memory.rom = vf->map(vf, gb->pristineRomSize, MAP_READ);
#endif
if (!gb->memory.rom) {
return false;
}
gb->yankedRomSize = 0;
gb->memory.romBase = gb->memory.rom;
gb->memory.romSize = gb->pristineRomSize;
gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
GBMBCInit(gb);
if (gb->cpu) {
struct LR35902Core* cpu = gb->cpu;
cpu->memory.setActiveRegion(cpu, cpu->pc);
}
// TODO: error check
return true;
}
static void GBSramDeinit(struct GB* gb) {
if (gb->sramVf) {
gb->sramVf->unmap(gb->sramVf, gb->memory.sram, gb->sramSize);
if (gb->memory.mbcType == GB_MBC3_RTC && gb->sramVf == gb->sramRealVf) {
GBMBCRTCWrite(gb);
}
gb->sramVf = NULL;
} else if (gb->memory.sram) {
mappedMemoryFree(gb->memory.sram, gb->sramSize);
}
gb->memory.sram = 0;
}
bool GBLoadSave(struct GB* gb, struct VFile* vf) {
GBSramDeinit(gb);
gb->sramVf = vf;
gb->sramRealVf = vf;
if (gb->sramSize) {
GBResizeSram(gb, gb->sramSize);
}
return vf;
}
void GBResizeSram(struct GB* gb, size_t size) {
if (gb->memory.sram && size <= gb->sramSize) {
return;
}
struct VFile* vf = gb->sramVf;
if (vf) {
if (vf == gb->sramRealVf) {
ssize_t vfSize = vf->size(vf);
if (vfSize >= 0 && (size_t) vfSize < size) {
uint8_t extdataBuffer[0x100];
if (vfSize & 0xFF) {
vf->seek(vf, -(vfSize & 0xFF), SEEK_END);
vf->read(vf, extdataBuffer, vfSize & 0xFF);
}
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
}
vf->truncate(vf, size + (vfSize & 0xFF));
if (vfSize & 0xFF) {
vf->seek(vf, size, SEEK_SET);
vf->write(vf, extdataBuffer, vfSize & 0xFF);
}
gb->memory.sram = vf->map(vf, size, MAP_WRITE);
memset(&gb->memory.sram[gb->sramSize], 0xFF, size - gb->sramSize);
} else if (size > gb->sramSize || !gb->memory.sram) {
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
}
gb->memory.sram = vf->map(vf, size, MAP_WRITE);
}
} else {
if (gb->memory.sram) {
vf->unmap(vf, gb->memory.sram, gb->sramSize);
}
gb->memory.sram = vf->map(vf, size, MAP_READ);
}
if (gb->memory.sram == (void*) -1) {
gb->memory.sram = NULL;
}
} else {
uint8_t* newSram = anonymousMemoryMap(size);
if (gb->memory.sram) {
if (size > gb->sramSize) {
memcpy(newSram, gb->memory.sram, gb->sramSize);
memset(&newSram[gb->sramSize], 0xFF, size - gb->sramSize);
} else {
memcpy(newSram, gb->memory.sram, size);
}
mappedMemoryFree(gb->memory.sram, gb->sramSize);
} else {
memset(newSram, 0xFF, size);
}
gb->memory.sram = newSram;
}
if (gb->sramSize < size) {
gb->sramSize = size;
}
}
void GBSramClean(struct GB* gb, uint32_t frameCount) {
// TODO: Share with GBASavedataClean
if (!gb->sramVf) {
return;
}
if (gb->sramDirty & GB_SRAM_DIRT_NEW) {
gb->sramDirtAge = frameCount;
gb->sramDirty &= ~GB_SRAM_DIRT_NEW;
if (!(gb->sramDirty & GB_SRAM_DIRT_SEEN)) {
gb->sramDirty |= GB_SRAM_DIRT_SEEN;
}
} else if ((gb->sramDirty & GB_SRAM_DIRT_SEEN) && frameCount - gb->sramDirtAge > CLEANUP_THRESHOLD) {
if (gb->sramMaskWriteback) {
GBSavedataUnmask(gb);
}
if (gb->memory.mbcType == GB_MBC3_RTC) {
GBMBCRTCWrite(gb);
}
gb->sramDirty = 0;
if (gb->memory.sram && gb->sramVf->sync(gb->sramVf, gb->memory.sram, gb->sramSize)) {
mLOG(GB_MEM, INFO, "Savedata synced");
} else {
mLOG(GB_MEM, INFO, "Savedata failed to sync!");
}
}
}
void GBSavedataMask(struct GB* gb, struct VFile* vf, bool writeback) {
GBSramDeinit(gb);
gb->sramVf = vf;
gb->sramMaskWriteback = writeback;
gb->memory.sram = vf->map(vf, gb->sramSize, MAP_READ);
GBMBCSwitchSramBank(gb, gb->memory.sramCurrentBank);
}
void GBSavedataUnmask(struct GB* gb) {
if (gb->sramVf == gb->sramRealVf) {
return;
}
struct VFile* vf = gb->sramVf;
GBSramDeinit(gb);
gb->sramVf = gb->sramRealVf;
gb->memory.sram = gb->sramVf->map(gb->sramVf, gb->sramSize, MAP_WRITE);
if (gb->sramMaskWriteback) {
vf->seek(vf, 0, SEEK_SET);
vf->read(vf, gb->memory.sram, gb->sramSize);
gb->sramMaskWriteback = false;
}
vf->close(vf);
}
void GBUnloadROM(struct GB* gb) {
// TODO: Share with GBAUnloadROM
if (gb->memory.rom && gb->memory.romBase != gb->memory.rom && !gb->isPristine) {
free(gb->memory.romBase);
}
if (gb->memory.rom && !gb->isPristine) {
if (gb->yankedRomSize) {
gb->yankedRomSize = 0;
}
mappedMemoryFree(gb->memory.rom, GB_SIZE_CART_MAX);
}
if (gb->romVf) {
#ifndef FIXED_ROM_BUFFER
gb->romVf->unmap(gb->romVf, gb->memory.rom, gb->pristineRomSize);
#endif
gb->romVf->close(gb->romVf);
gb->romVf = NULL;
}
gb->memory.rom = NULL;
gb->memory.mbcType = GB_MBC_AUTODETECT;
gb->isPristine = false;
gb->sramMaskWriteback = false;
GBSramDeinit(gb);
if (gb->sramRealVf) {
gb->sramRealVf->close(gb->sramRealVf);
}
gb->sramRealVf = NULL;
gb->sramVf = NULL;
if (gb->memory.cam && gb->memory.cam->stopRequestImage) {
gb->memory.cam->stopRequestImage(gb->memory.cam);
}
}
void GBSynthesizeROM(struct VFile* vf) {
if (!vf) {
return;
}
const struct GBCartridge cart = {
.logo = { _knownHeader[0], _knownHeader[1], _knownHeader[2], _knownHeader[3]}
};
vf->seek(vf, 0x100, SEEK_SET);
vf->write(vf, &cart, sizeof(cart));
}
void GBLoadBIOS(struct GB* gb, struct VFile* vf) {
gb->biosVf = vf;
}
void GBApplyPatch(struct GB* gb, struct Patch* patch) {
size_t patchedSize = patch->outputSize(patch, gb->memory.romSize);
if (!patchedSize) {
return;
}
if (patchedSize > GB_SIZE_CART_MAX) {
patchedSize = GB_SIZE_CART_MAX;
}
void* newRom = anonymousMemoryMap(GB_SIZE_CART_MAX);
if (!patch->applyPatch(patch, gb->memory.rom, gb->pristineRomSize, newRom, patchedSize)) {
mappedMemoryFree(newRom, GB_SIZE_CART_MAX);
return;
}
if (gb->romVf) {
#ifndef FIXED_ROM_BUFFER
gb->romVf->unmap(gb->romVf, gb->memory.rom, gb->pristineRomSize);
#endif
gb->romVf->close(gb->romVf);
gb->romVf = NULL;
}
gb->isPristine = false;
if (gb->memory.romBase == gb->memory.rom) {
gb->memory.romBase = newRom;
}
gb->memory.rom = newRom;
gb->memory.romSize = patchedSize;
gb->romCrc32 = doCrc32(gb->memory.rom, gb->memory.romSize);
gb->cpu->memory.setActiveRegion(gb->cpu, gb->cpu->pc);
}
void GBDestroy(struct GB* gb) {
GBUnloadROM(gb);
if (gb->biosVf) {
gb->biosVf->close(gb->biosVf);
gb->biosVf = 0;
}
GBMemoryDeinit(gb);
GBAudioDeinit(&gb->audio);
GBVideoDeinit(&gb->video);
GBSIODeinit(&gb->sio);
mCoreCallbacksListDeinit(&gb->coreCallbacks);
}
void GBInterruptHandlerInit(struct LR35902InterruptHandler* irqh) {
irqh->reset = GBReset;
irqh->processEvents = GBProcessEvents;
irqh->setInterrupts = GBSetInterrupts;
irqh->irqVector = GBIRQVector;
irqh->hitIllegal = GBIllegal;
irqh->stop = GBStop;
irqh->halt = GBHalt;
}
static uint32_t _GBBiosCRC32(struct VFile* vf) {
ssize_t size = vf->size(vf);
if (size <= 0 || size > GB_SIZE_CART_BANK0) {
return 0;
}
void* bios = vf->map(vf, size, MAP_READ);
uint32_t biosCrc = doCrc32(bios, size);
vf->unmap(vf, bios, size);
return biosCrc;
}
bool GBIsBIOS(struct VFile* vf) {
switch (_GBBiosCRC32(vf)) {
case DMG_BIOS_CHECKSUM:
case DMG_2_BIOS_CHECKSUM:
case MGB_BIOS_CHECKSUM:
case SGB_BIOS_CHECKSUM:
case CGB_BIOS_CHECKSUM:
return true;
default:
return false;
}
}
void GBReset(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
gb->memory.romBase = gb->memory.rom;
GBDetectModel(gb);
if (gb->biosVf) {
if (!GBIsBIOS(gb->biosVf)) {
gb->biosVf->close(gb->biosVf);
gb->biosVf = NULL;
} else {
gb->biosVf->seek(gb->biosVf, 0, SEEK_SET);
gb->memory.romBase = malloc(GB_SIZE_CART_BANK0);
ssize_t size = gb->biosVf->read(gb->biosVf, gb->memory.romBase, GB_SIZE_CART_BANK0);
memcpy(&gb->memory.romBase[size], &gb->memory.rom[size], GB_SIZE_CART_BANK0 - size);
if (size > 0x100) {
memcpy(&gb->memory.romBase[0x100], &gb->memory.rom[0x100], sizeof(struct GBCartridge));
}
cpu->a = 0;
cpu->f.packed = 0;
cpu->c = 0;
cpu->e = 0;
cpu->h = 0;
cpu->l = 0;
cpu->sp = 0;
cpu->pc = 0;
}
}
cpu->b = 0;
cpu->d = 0;
gb->timer.internalDiv = 0;
gb->cpuBlocked = false;
gb->earlyExit = false;
gb->doubleSpeed = 0;
if (gb->yankedRomSize) {
gb->memory.romSize = gb->yankedRomSize;
gb->yankedRomSize = 0;
}
gb->sgbBit = -1;
gb->sgbControllers = 0;
gb->sgbCurrentController = 0;
gb->currentSgbBits = 0;
memset(gb->sgbPacket, 0, sizeof(gb->sgbPacket));
mTimingClear(&gb->timing);
GBMemoryReset(gb);
GBVideoReset(&gb->video);
GBTimerReset(&gb->timer);
if (!gb->biosVf) {
GBSkipBIOS(gb);
} else {
mTimingSchedule(&gb->timing, &gb->timer.event, 0);
}
GBIOReset(gb);
GBAudioReset(&gb->audio);
GBSIOReset(&gb->sio);
cpu->memory.setActiveRegion(cpu, cpu->pc);
gb->sramMaskWriteback = false;
GBSavedataUnmask(gb);
}
void GBSkipBIOS(struct GB* gb) {
struct LR35902Core* cpu = gb->cpu;
int nextDiv = 0;
switch (gb->model) {
case GB_MODEL_AUTODETECT: // Silence warnings
gb->model = GB_MODEL_DMG;
case GB_MODEL_DMG:
cpu->a = 1;
cpu->f.packed = 0xB0;
cpu->c = 0x13;
cpu->e = 0xD8;
cpu->h = 1;
cpu->l = 0x4D;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_SGB:
cpu->a = 1;
cpu->f.packed = 0x00;
cpu->c = 0x14;
cpu->e = 0x00;
cpu->h = 0xC0;
cpu->l = 0x60;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_MGB:
cpu->a = 0xFF;
cpu->f.packed = 0xB0;
cpu->c = 0x13;
cpu->e = 0xD8;
cpu->h = 1;
cpu->l = 0x4D;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_SGB2:
cpu->a = 0xFF;
cpu->f.packed = 0x00;
cpu->c = 0x14;
cpu->e = 0x00;
cpu->h = 0xC0;
cpu->l = 0x60;
gb->timer.internalDiv = 0xABC;
nextDiv = 4;
break;
case GB_MODEL_AGB:
cpu->a = 0x11;
cpu->b = 1;
cpu->f.packed = 0x00;
cpu->c = 0;
cpu->e = 0x08;
cpu->h = 0;
cpu->l = 0x7C;
gb->timer.internalDiv = 0x1EA;
nextDiv = 0xC;
break;
case GB_MODEL_CGB:
cpu->a = 0x11;
cpu->f.packed = 0x80;
cpu->c = 0;
cpu->e = 0x08;
cpu->h = 0;
cpu->l = 0x7C;
gb->timer.internalDiv = 0x1EA;
nextDiv = 0xC;
break;
}
cpu->sp = 0xFFFE;
cpu->pc = 0x100;
mTimingDeschedule(&gb->timing, &gb->timer.event);
mTimingSchedule(&gb->timing, &gb->timer.event, 0);
GBIOWrite(gb, REG_LCDC, 0x91);
if (gb->biosVf) {
GBUnmapBIOS(gb);
}
}
void GBUnmapBIOS(struct GB* gb) {
if (gb->memory.romBase < gb->memory.rom || gb->memory.romBase > &gb->memory.rom[gb->memory.romSize - 1]) {
free(gb->memory.romBase);
gb->memory.romBase = gb->memory.rom;
}
// XXX: Force AGB registers for AGB-mode
if (gb->model == GB_MODEL_AGB && gb->cpu->pc == 0x100) {
gb->cpu->b = 1;
}
}
void GBDetectModel(struct GB* gb) {
if (gb->model != GB_MODEL_AUTODETECT) {
return;
}
if (gb->biosVf) {
switch (_GBBiosCRC32(gb->biosVf)) {
case DMG_BIOS_CHECKSUM:
case DMG_2_BIOS_CHECKSUM:
gb->model = GB_MODEL_DMG;
break;
case MGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_MGB;
break;
case SGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_SGB;
break;
case CGB_BIOS_CHECKSUM:
gb->model = GB_MODEL_CGB;
break;
default:
gb->biosVf->close(gb->biosVf);
gb->biosVf = NULL;
}
}
if (gb->model == GB_MODEL_AUTODETECT && gb->memory.rom) {
const struct GBCartridge* cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
if (cart->cgb & 0x80) {
gb->model = GB_MODEL_CGB;
} else if (cart->sgb == 0x03 && cart->oldLicensee == 0x33) {
gb->model = GB_MODEL_SGB;
} else {
gb->model = GB_MODEL_DMG;
}
}
switch (gb->model) {
case GB_MODEL_DMG:
case GB_MODEL_SGB:
case GB_MODEL_AUTODETECT: //Silence warnings
gb->audio.style = GB_AUDIO_DMG;
break;
case GB_MODEL_MGB:
case GB_MODEL_SGB2:
gb->audio.style = GB_AUDIO_MGB;
break;
case GB_MODEL_AGB:
case GB_MODEL_CGB:
gb->audio.style = GB_AUDIO_CGB;
break;
}
}
void GBUpdateIRQs(struct GB* gb) {
int irqs = gb->memory.ie & gb->memory.io[REG_IF];
if (!irqs) {
gb->cpu->irqPending = false;
return;
}
gb->cpu->halted = false;
if (!gb->memory.ime) {
gb->cpu->irqPending = false;
return;
}
if (gb->cpu->irqPending) {
return;
}
LR35902RaiseIRQ(gb->cpu);
}
void GBProcessEvents(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
do {
int32_t cycles = cpu->cycles;
int32_t nextEvent;
cpu->cycles = 0;
cpu->nextEvent = INT_MAX;
nextEvent = cycles;
do {
nextEvent = mTimingTick(&gb->timing, nextEvent);
} while (gb->cpuBlocked);
cpu->nextEvent = nextEvent;
if (cpu->halted) {
cpu->cycles = cpu->nextEvent;
if (!gb->memory.ie || !gb->memory.ime) {
break;
}
}
if (gb->earlyExit) {
break;
}
} while (cpu->cycles >= cpu->nextEvent);
gb->earlyExit = false;
}
void GBSetInterrupts(struct LR35902Core* cpu, bool enable) {
struct GB* gb = (struct GB*) cpu->master;
mTimingDeschedule(&gb->timing, &gb->eiPending);
if (!enable) {
gb->memory.ime = false;
GBUpdateIRQs(gb);
} else {
mTimingSchedule(&gb->timing, &gb->eiPending, 4);
}
}
uint16_t GBIRQVector(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
int irqs = gb->memory.ie & gb->memory.io[REG_IF];
if (irqs & (1 << GB_IRQ_VBLANK)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_VBLANK);
return GB_VECTOR_VBLANK;
}
if (irqs & (1 << GB_IRQ_LCDSTAT)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_LCDSTAT);
return GB_VECTOR_LCDSTAT;
}
if (irqs & (1 << GB_IRQ_TIMER)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_TIMER);
return GB_VECTOR_TIMER;
}
if (irqs & (1 << GB_IRQ_SIO)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_SIO);
return GB_VECTOR_SIO;
}
if (irqs & (1 << GB_IRQ_KEYPAD)) {
gb->memory.io[REG_IF] &= ~(1 << GB_IRQ_KEYPAD);
return GB_VECTOR_KEYPAD;
}
return 0;
}
static void _enableInterrupts(struct mTiming* timing, void* user, uint32_t cyclesLate) {
UNUSED(timing);
UNUSED(cyclesLate);
struct GB* gb = user;
gb->memory.ime = true;
GBUpdateIRQs(gb);
}
void GBHalt(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
if (!(gb->memory.ie & gb->memory.io[REG_IF])) {
cpu->cycles = cpu->nextEvent;
cpu->halted = true;
} else if (gb->model < GB_MODEL_CGB) {
mLOG(GB, STUB, "Unimplemented HALT bug");
}
}
void GBStop(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
if (cpu->bus) {
mLOG(GB, GAME_ERROR, "Hit illegal stop at address %04X:%02X", cpu->pc, cpu->bus);
}
if (gb->memory.io[REG_KEY1] & 1) {
gb->doubleSpeed ^= 1;
gb->audio.timingFactor = gb->doubleSpeed + 1;
gb->memory.io[REG_KEY1] = 0;
gb->memory.io[REG_KEY1] |= gb->doubleSpeed << 7;
} else if (cpu->bus) {
#ifdef USE_DEBUGGERS
if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
struct mDebuggerEntryInfo info = {
.address = cpu->pc - 1,
.type.bp.opcode = 0x1000 | cpu->bus
};
mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
}
#endif
// Hang forever
gb->memory.ime = 0;
cpu->pc -= 2;
}
// TODO: Actually stop
}
void GBIllegal(struct LR35902Core* cpu) {
struct GB* gb = (struct GB*) cpu->master;
mLOG(GB, GAME_ERROR, "Hit illegal opcode at address %04X:%02X", cpu->pc, cpu->bus);
#ifdef USE_DEBUGGERS
if (cpu->components && cpu->components[CPU_COMPONENT_DEBUGGER]) {
struct mDebuggerEntryInfo info = {
.address = cpu->pc,
.type.bp.opcode = cpu->bus
};
mDebuggerEnter((struct mDebugger*) cpu->components[CPU_COMPONENT_DEBUGGER], DEBUGGER_ENTER_ILLEGAL_OP, &info);
}
#endif
// Hang forever
gb->memory.ime = 0;
--cpu->pc;
}
bool GBIsROM(struct VFile* vf) {
if (!vf) {
return false;
}
vf->seek(vf, 0x104, SEEK_SET);
uint8_t header[4];
if (vf->read(vf, &header, sizeof(header)) < (ssize_t) sizeof(header)) {
return false;
}
if (memcmp(header, _knownHeader, sizeof(header))) {
return false;
}
return true;
}
void GBGetGameTitle(const struct GB* gb, char* out) {
const struct GBCartridge* cart = NULL;
if (gb->memory.rom) {
cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
}
if (!cart) {
return;
}
if (cart->oldLicensee != 0x33) {
memcpy(out, cart->titleLong, 16);
} else {
memcpy(out, cart->titleShort, 11);
}
}
void GBGetGameCode(const struct GB* gb, char* out) {
memset(out, 0, 8);
const struct GBCartridge* cart = NULL;
if (gb->memory.rom) {
cart = (const struct GBCartridge*) &gb->memory.rom[0x100];
}
if (!cart) {
return;
}
if (cart->cgb == 0xC0) {
memcpy(out, "CGB-????", 8);
} else {
memcpy(out, "DMG-????", 8);
}
if (cart->oldLicensee == 0x33) {
memcpy(&out[4], cart->maker, 4);
}
}
void GBFrameEnded(struct GB* gb) {
GBSramClean(gb, gb->video.frameCounter);
if (gb->cpu->components && gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE]) {
struct mCheatDevice* device = (struct mCheatDevice*) gb->cpu->components[CPU_COMPONENT_CHEAT_DEVICE];
size_t i;
for (i = 0; i < mCheatSetsSize(&device->cheats); ++i) {
struct mCheatSet* cheats = *mCheatSetsGetPointer(&device->cheats, i);
mCheatRefresh(device, cheats);
}
}
GBTestKeypadIRQ(gb);
}
enum GBModel GBNameToModel(const char* model) {
if (strcasecmp(model, "DMG") == 0) {
return GB_MODEL_DMG;
} else if (strcasecmp(model, "CGB") == 0) {
return GB_MODEL_CGB;
} else if (strcasecmp(model, "AGB") == 0) {
return GB_MODEL_AGB;
} else if (strcasecmp(model, "SGB") == 0) {
return GB_MODEL_SGB;
} else if (strcasecmp(model, "MGB") == 0) {
return GB_MODEL_MGB;
} else if (strcasecmp(model, "SGB2") == 0) {
return GB_MODEL_SGB2;
}
return GB_MODEL_AUTODETECT;
}
const char* GBModelToName(enum GBModel model) {
switch (model) {
case GB_MODEL_DMG:
return "DMG";
case GB_MODEL_SGB:
return "SGB";
case GB_MODEL_MGB:
return "MGB";
case GB_MODEL_SGB2:
return "SGB2";
case GB_MODEL_CGB:
return "CGB";
case GB_MODEL_AGB:
return "AGB";
default:
case GB_MODEL_AUTODETECT:
return NULL;
}
}