SameBoy/Core/timing.c

238 lines
7.2 KiB
C
Raw Normal View History

2016-03-30 23:07:55 +03:00
#include "gb.h"
#ifdef _WIN32
#define _WIN32_WINNT 0x0500
#include <Windows.h>
#else
#include <sys/time.h>
#endif
static int64_t get_nanoseconds(void)
{
#ifndef _WIN32
struct timeval now;
gettimeofday(&now, NULL);
return (now.tv_usec) * 1000 + now.tv_sec * 1000000000L;
#else
FILETIME time;
GetSystemTimeAsFileTime(&time);
return (((int64_t)time.dwHighDateTime << 32) | time.dwLowDateTime) * 100L;
#endif
}
2017-05-04 03:32:30 +02:00
#ifndef __LIBRETRO__
static void nsleep(uint64_t nanoseconds)
{
#ifndef _WIN32
struct timespec sleep = {0, nanoseconds};
nanosleep(&sleep, NULL);
#else
HANDLE timer;
LARGE_INTEGER time;
timer = CreateWaitableTimer(NULL, true, NULL);
time.QuadPart = -(nanoseconds / 100L);
SetWaitableTimer(timer, &time, 0, NULL, NULL, false);
WaitForSingleObject(timer, INFINITE);
CloseHandle(timer);
#endif
}
2017-05-04 03:32:30 +02:00
#endif
bool GB_timing_sync_turbo(GB_gameboy_t *gb)
{
if (!gb->turbo_dont_skip) {
int64_t nanoseconds = get_nanoseconds();
if (nanoseconds <= gb->last_sync + FRAME_LENGTH) {
return true;
}
gb->last_sync = nanoseconds;
}
return false;
}
void GB_timing_sync(GB_gameboy_t *gb)
{
if (gb->turbo) {
gb->cycles_since_last_sync = 0;
return;
}
/* Prevent syncing if not enough time has passed.*/
if (gb->cycles_since_last_sync < LCDC_PERIOD / 4) return;
uint64_t target_nanoseconds = gb->cycles_since_last_sync * FRAME_LENGTH / LCDC_PERIOD;
int64_t nanoseconds = get_nanoseconds();
if (labs((signed long)(nanoseconds - gb->last_sync)) < target_nanoseconds ) {
#ifndef __LIBRETRO__
nsleep(target_nanoseconds + gb->last_sync - nanoseconds);
#endif
gb->last_sync += target_nanoseconds;
}
else {
gb->last_sync = nanoseconds;
}
gb->cycles_since_last_sync = 0;
}
2016-03-30 23:07:55 +03:00
static void GB_ir_run(GB_gameboy_t *gb)
{
if (gb->ir_queue_length == 0) return;
if (gb->cycles_since_input_ir_change >= gb->ir_queue[0].delay) {
gb->cycles_since_input_ir_change -= gb->ir_queue[0].delay;
gb->infrared_input = gb->ir_queue[0].state;
gb->ir_queue_length--;
memmove(&gb->ir_queue[0], &gb->ir_queue[1], sizeof(gb->ir_queue[0]) * (gb->ir_queue_length));
}
}
2016-08-06 13:56:29 +03:00
static void advance_tima_state_machine(GB_gameboy_t *gb)
{
gb->io_registers[GB_IO_IF] |= gb->future_interrupts & 4;
gb->future_interrupts &= ~4;
2016-08-06 13:56:29 +03:00
if (gb->tima_reload_state == GB_TIMA_RELOADED) {
gb->tima_reload_state = GB_TIMA_RUNNING;
}
else if (gb->tima_reload_state == GB_TIMA_RELOADING) {
gb->future_interrupts |= 4;
2016-08-06 13:56:29 +03:00
gb->tima_reload_state = GB_TIMA_RELOADED;
}
}
void GB_advance_cycles(GB_gameboy_t *gb, uint8_t cycles)
2016-03-30 23:07:55 +03:00
{
// Affected by speed boost
gb->dma_cycles += cycles;
2016-08-05 17:22:12 +03:00
2016-08-06 13:56:29 +03:00
advance_tima_state_machine(gb);
2016-08-05 17:22:12 +03:00
for (int i = 0; i < cycles; i += 4) {
/* This is a bit tricky. The DIV and APU are tightly coupled, but DIV is affected
by the speed boost while the APU is not */
2016-08-05 17:22:12 +03:00
GB_set_internal_div_counter(gb, gb->div_cycles + 4);
gb->apu.apu_cycles += 4 >> gb->cgb_double_speed;
2016-08-05 17:22:12 +03:00
}
2016-08-06 13:56:29 +03:00
if (cycles > 4) {
advance_tima_state_machine(gb);
if (cycles > 8) {
advance_tima_state_machine(gb);
}
}
uint16_t previous_serial_cycles = gb->serial_cycles;
gb->serial_cycles += cycles;
if (gb->serial_length) {
if ((gb->serial_cycles & gb->serial_length) != (previous_serial_cycles & gb->serial_length)) {
gb->serial_length = 0;
gb->io_registers[GB_IO_SC] &= ~0x80;
2016-11-12 01:58:53 +02:00
/* TODO: Does SB "update" bit by bit? */
if (gb->serial_transfer_end_callback) {
gb->io_registers[GB_IO_SB] = gb->serial_transfer_end_callback(gb);
}
else {
gb->io_registers[GB_IO_SB] = 0xFF;
}
gb->io_registers[GB_IO_IF] |= 8;
}
}
2016-09-16 11:58:31 +03:00
gb->debugger_ticks += cycles;
cycles >>= gb->cgb_double_speed;
2016-03-30 23:07:55 +03:00
// Not affected by speed boost
gb->hdma_cycles += cycles;
gb->apu_output.sample_cycles += cycles;
gb->cycles_since_ir_change += cycles;
gb->cycles_since_input_ir_change += cycles;
gb->cycles_since_last_sync += cycles;
GB_dma_run(gb);
GB_hdma_run(gb);
GB_apu_run(gb);
GB_display_run(gb, cycles);
GB_ir_run(gb);
2016-03-30 23:07:55 +03:00
}
2016-08-05 17:22:12 +03:00
/* Standard Timers */
static const unsigned int GB_TAC_RATIOS[] = {1024, 16, 64, 256};
static void increase_tima(GB_gameboy_t *gb)
{
gb->io_registers[GB_IO_TIMA]++;
if (gb->io_registers[GB_IO_TIMA] == 0) {
gb->io_registers[GB_IO_TIMA] = gb->io_registers[GB_IO_TMA];
2016-08-06 13:56:29 +03:00
gb->tima_reload_state = GB_TIMA_RELOADING;
2016-08-05 17:22:12 +03:00
}
}
static bool counter_overflow_check(uint32_t old, uint32_t new, uint32_t max)
2016-03-30 23:07:55 +03:00
{
2016-08-05 17:22:12 +03:00
return (old & (max >> 1)) && !(new & (max >> 1));
}
2016-03-30 23:07:55 +03:00
2016-08-05 17:22:12 +03:00
void GB_set_internal_div_counter(GB_gameboy_t *gb, uint32_t value)
{
2016-10-22 00:49:32 +03:00
/* TIMA increases when a specific high-bit becomes a low-bit. */
2016-08-05 17:22:12 +03:00
value &= INTERNAL_DIV_CYCLES - 1;
if ((gb->io_registers[GB_IO_TAC] & 4) &&
counter_overflow_check(gb->div_cycles, value, GB_TAC_RATIOS[gb->io_registers[GB_IO_TAC] & 3])) {
increase_tima(gb);
}
if (counter_overflow_check(gb->div_cycles, value, gb->cgb_double_speed? 0x4000 : 0x2000)) {
GB_apu_run(gb);
GB_apu_div_event(gb);
}
2016-08-05 17:22:12 +03:00
gb->div_cycles = value;
}
2016-03-30 23:07:55 +03:00
2016-08-05 17:22:12 +03:00
/*
This glitch is based on the expected results of mooneye-gb rapid_toggle test.
This glitch happens because how TIMA is increased, see GB_set_internal_div_counter.
According to GiiBiiAdvance, GBC's behavior is different, but this was not tested or implemented.
*/
void GB_emulate_timer_glitch(GB_gameboy_t *gb, uint8_t old_tac, uint8_t new_tac)
{
/* Glitch only happens when old_tac is enabled. */
if (!(old_tac & 4)) return;
unsigned int old_clocks = GB_TAC_RATIOS[old_tac & 3];
unsigned int new_clocks = GB_TAC_RATIOS[new_tac & 3];
/* The bit used for overflow testing must have been 1 */
if (gb->div_cycles & (old_clocks >> 1)) {
/* And now either the timer must be disabled, or the new bit used for overflow testing be 0. */
if (!(new_tac & 4) || gb->div_cycles & (new_clocks >> 1)) {
increase_tima(gb);
2016-03-30 23:07:55 +03:00
}
}
2016-07-18 00:39:43 +03:00
}
2016-03-30 23:07:55 +03:00
2016-07-18 00:39:43 +03:00
void GB_rtc_run(GB_gameboy_t *gb)
{
2016-08-21 22:33:57 +03:00
if ((gb->rtc_real.high & 0x40) == 0) { /* is timer running? */
2016-07-18 00:39:43 +03:00
time_t current_time = time(NULL);
while (gb->last_rtc_second < current_time) {
gb->last_rtc_second++;
2016-08-21 22:33:57 +03:00
if (++gb->rtc_real.seconds == 60)
2016-07-18 00:39:43 +03:00
{
2016-08-21 22:33:57 +03:00
gb->rtc_real.seconds = 0;
if (++gb->rtc_real.minutes == 60)
2016-03-30 23:07:55 +03:00
{
2016-08-21 22:33:57 +03:00
gb->rtc_real.minutes = 0;
if (++gb->rtc_real.hours == 24)
2016-03-30 23:07:55 +03:00
{
2016-08-21 22:33:57 +03:00
gb->rtc_real.hours = 0;
if (++gb->rtc_real.days == 0)
2016-03-30 23:07:55 +03:00
{
2016-08-21 22:33:57 +03:00
if (gb->rtc_real.high & 1) /* Bit 8 of days*/
2016-03-30 23:07:55 +03:00
{
2016-08-21 22:33:57 +03:00
gb->rtc_real.high |= 0x80; /* Overflow bit */
2016-03-30 23:07:55 +03:00
}
2016-08-21 22:33:57 +03:00
gb->rtc_real.high ^= 1;
2016-03-30 23:07:55 +03:00
}
}
}
}
}
}
}